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A B S T R A C T

Background: The food industry faces increasing demands for improved quality and safety, while conventional 
quality control methods remain labour-intensive, slow, and limited. Industry 4.0 (I4.0) technologies show 
promise, but real-world implementation remains limited. Advancing practice requires clear insight into tech
nical/technological and managerial benefits and barriers.
Scope: This review examines the I4.0 technologies and their implementation status in quality and safety systems 
in food manufacturing, and their applicability in either product or process quality control, as well as in elements 
of the quality control circle (data collection and analysis, corrective and proactive actions). Followingly, the 
benefits and barriers of these technologies that are mentioned in the reviewed studies are categorised using a 
techno-managerial approach.
Key findings and conclusions: Artificial intelligence (AI) is mainly used for product quality control, while the 
Internet of Things supports process quality control in the reviewed studies. Data analysis is the most addressed 
element of the quality circle; AI has the most potential. The reported benefits are primarily technical/techno
logical, focusing on contamination detection and real-time quality monitoring. Managerial benefits, though less 
emphasised, include cost-effectiveness, better food safety and crisis management, and strategic improvement. 
Key technical/technological barriers are process and equipment-related, notably the need for high-quality data and 
time-intensive AI model training for large or complex datasets. Besides, reliable and accurate performance can 
still be a barrier due to overfitting, misclassification, etc. Managerial barriers are mostly people-related, including 
manual labelling errors and security issues. A multidisciplinary approach is essential to overcoming these bar
riers and promoting field implementations.

1. Introduction

In the last decades, consumer and customer interest and demand for 
better food quality, safety (Hassoun et al., 2023a), authenticity, trace
ability, and sustainability (Henrichs et al., 2022) have created a 
competitive food industry ambient. Additionally, the COVID-19 
pandemic has presented new challenges for competent authorities and 
food professionals in terms of routine inspection, control, monitoring, 
and surveillance of food quality and safety parameters, as well as sam
pling and analysis of food, and managing food incidents (FAO/WHO, 
2020). Although conventional food quality and safety control methods 
are useful, they often suffer from having a laborious and destructive 
nature, high cost, long processing time, limited number of analytes, low 

performance, limited test scope, lack of sensitivity for detecting low 
levels of contaminants or adulterants in food, etc. (Hassoun et al., 2023a; 
Djekić et al., 2023). The reshaped demands, experienced challenges, and 
current drawbacks of conventional methods have been driving the food 
industry and researchers to seek more innovative ways and technolog
ical solutions for food quality and safety control, leading to increasing 
awareness and interest in adopting digital technologies (Hassoun et al., 
2023 a,b). According to Djekić et al. (2023), conventional food quality 
and safety control practices can be improved and complemented with 
advanced digital technologies, such as predictive analytics (i.e., fore
casting outcomes based on historical and current data), prescriptive 
analytics (i.e., recommending best actions or solutions based on data 
analysis and business rules), cognitive analytics (i.e., understanding and 
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interacting with human speech, images, and sounds), and edge 
computing (i.e., using edge devices to process data locally, reducing 
latency, bandwidth, and storage costs).

The potential of digital technologies in food quality and safety con
trol is widely recognised by official organisations. FAO’s 2023 strategic 
priorities (2022–2031) for food safety emphasise the need for digital
isation and technological modernisation in food control. Similarly, 
World Health Organization (WHO) (2022) highlights digital trans
formation as a key driver shaping the future of food safety. The Euro
pean Commission (2021) projects that over 90 % of European SMEs will 
achieve at least basic digital intensity by 2030.

With this growing interest and acknowledgement in the adoption of 
digital technologies in food quality and safety control, many researchers 
have focused on the application and impacts of Industry 4.0 (I4.0) 
technologies (such as artificial intelligence (AI), big data, the cloud, the 
Internet of Things (IoT), blockchain, digital twins, 3-D printings etc. 
(Hassoun et al., 2023a-b; Djekić et al., 2023; Bai et al., 2020). For 
instance, Chatterjee et al. (2024) examined the impact of I4.0 technol
ogies on food and beverage companies in India, while Romanello and 
Veglio (2022) investigated the drivers, challenges, and outcomes of I4.0 
adoption in an Italian food processing firm. On a broader scale, Konfo 
et al. (2023) addressed challenges and opportunities for the adoption of 
these technologies in the agri-food sector. Senturk et al. (2023) dis
cussed the potential advantages and disadvantages of specifically IoT 
and related technologies in agricultural practices. Similarly, Kaur et al. 
(2022) explored the potential of blockchain and IoT technologies in the 
food supply chain. Sustainability has also emerged as a theme in this 
topic. Sharma et al. (2023) assessed critical barriers to implementing 
digital technologies in food supply chains for sustainable production and 
consumption, while Hassoun et al. (2022) examined their role in 
accelerating the global transition towards sustainable food systems. 
Adding to this, Hassoun et al. (2023b) discussed how I4.0 technologies 
and advancements can support the food industry, highlighting the 
overlooked human factors in their implementation. Trevisan & For
mentini (2024) assessed the adoption of these technologies in the 
agri-food supply chain, emphasising their potential to prevent and 
reduce food loss and waste throughout the supply chain. Together, all 
these studies underscore the growing interest in I4.0’s role in the food 
sector.

The concept of I4.0 has extended to food quality, forming "Food 
Quality 4.0" (FQ4.0), which focuses on determining food quality effi
ciently using digital technologies (Hassoun et al., 2023a). In their study, 
Hassoun et al. (2023a) discussed a selection of the most commonly used 
non-destructive and non-targeted fingerprinting methods, such as 
spectroscopic and imaging techniques, within the context of FQ4.0, 
highlighting the promising role of AI and big data in enhancing food 
quality and safety. They also noted uncertainties about broader adoption 
and called for more systematic reviews. Djekić et al. (2023) describe the 
FQ4.0 concept as using I4.0 technologies and data analytics to automate 
and optimise quality management. In their study, they explain its evo
lution from Food Quality 1.0, comparing it with traditional food quality 
by considering products, processes, systems, and sustainable (nano) 
technologies for enhancing manufacturing and waste reduction. While 
these studies offer foundational insights regarding the FQ4.0 concept 
from a broad perspective, systematic research is still needed on the 
benefits of I4.0 technologies in quality and safety control systems.

Despite their potential benefits, various barriers may hinder the 
adoption of these technologies, such as accessibility, management of 
data, security, lack of finance, technological awareness, and knowledge 
and skills (Jagatheesaperumal et al., 2021; Romanello and Veglio, 
2022). However, these barriers are general and not specific to food 
quality and safety control. Implementing I4.0 technologies into food 
quality and safety control can bring not only technical aspects but also 
impact organisational structure and culture, requiring a multidisci
plinary approach that addresses both technical and managerial aspects, 
as advocated by Luning and Marcelis (2006, 2009).

This paper presents the applications, benefits and barriers of I4.0 
technologies for food quality and safety control systems in the food 
manufacturing stage based on a multidisciplinary techno-managerial (T- 
M) approach applying a systematic literature review. The review covers 
product and process control systems involving data collection, data 
analysis, and corrective/proactive actions during production.

2. Systematic literature review approach and thematic analysis

2.1. Review protocol

In this study, a systematic literature review methodology (Fig. 1) was 
conducted since it can provide a structured, comprehensive and trans
parent assessment of the available knowledge from the scientific liter
ature (Biesbroek et al., 2013). As shown in Fig. 1, firstly, core concepts 
(i.e., digital; food; quality; control) and their synonyms were identified 
(for details, see Table S1) to be able to reach the relevant knowledge for 
the defined research aim. Following that, an explorative literature 
assessment was performed through certain databases to determine the 
keywords that were connected to core concepts, and the inclusion and 
exclusion criteria.

As the inclusion criteria, English review and research articles 
(2017–2024) from peer-reviewed journals focusing on I4.0 technologies 
in food quality and safety control systems at the manufacturing stage 
were established. Review articles were used for snowballing to check 
any other relevant research articles and information. Articles that 
discuss the agricultural, farming and supply chain stages other than 
manufacturing and focus on plant or human treatment were excluded. 
Based on the defined criteria, search strings were designed with Boolean 
operators (Table S2) and used in the corresponding databases.

2.2. Extraction of data

The collected research articles were examined for the extraction of 

Fig. 1. Systematic literature review protocol (adapted from Biesbroek 
et al., 2013).
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relevant data through the designed critical appraisal questions 
(Table S3). These questions provided a systematic and transparent 
reviewing process of the information given in the articles in three main 
aspects; (i) the name, aim of developed technology and principle, 
implementation status (i.e., lab-tested or field-tested), applicable quality 
control type (i.e., process or product) and quality control circle elements 
(i.e., data collection, data analysis, corrective actions and proactive 
actions), and (ii) the benefits and (iii) barriers from the technological 
and managerial perspectives. In the current study, the technological 
perspective covers food production processes with typical product fea
tures, process and equipment, and production environment aspects 
(Luning and Marcelis, 2020) and technical aspects of technologies 
relating to the knowledge, machines, or methods (Cambridge Dictio
nary, n.d.); the managerial perspective involves people, organisational 
structures and procedures aspects (Luning and Marcelis, 2020).

2.3. Analysis of qualitative data on benefits and barriers: A thematic 
analysis using a techno-managerial approach

A qualitative analysis of identified technical/technological and 
managerial benefits and barriers was performed through a thematic 
analysis to identify themes from the data/information from the litera
ture. As the first step of the thematic analysis, the collected useful texts 
on benefits and barriers were re-read to get familiarised with the data. 
Subsequently, the units of analysis were decided for each useful text part 
per article. As the third step, the context units (i.e., full phrase or 
paragraph that assigns the meaning to the unit of analysis) were 
extracted from the collected useful texts. In the next step, similar or 
relevant context units were grouped, and an overall name (theme) was 
assigned for each group (e.g., “non-destructive quality control” or “high- 
quality data and time requirements”), which is called the ‘core of 
meaning’ (Zanin et al., 2021; Almansouri et al., 2022). Each assigned 
core of meaning corresponds to a sub-category. Subsequently, the bar
riers were further categorised into broader main technical/technological 
and managerial categories as described in section 2.2. This further 
classification of barriers facilitated a systematic approach to addressing 
them.

3. Industry 4.0 technologies for food quality and safety control 
systems

Various studies reviewed the applications or suggestions for the use 
of I4.0 technologies in agriculture (Cricelli et al., 2024; Yadav et al., 
2022) or food supply chains (Hamill et al., 2024; Malik et al., 2024; 
Shiraishi et al., 2024). However, the current study focuses on their ap
plications in the quality and safety control systems in the food 
manufacturing stage. In total, 38 research papers were found relevant 
based on the defined criteria and systematically analysed. Table 1 pre
sents the identified I4.0 technologies and their combinations with other 
tools, their implementation status, their applicability in product/process 
quality control, and quality control circle elements. Two implementa
tion statuses were considered: laboratory-tested, referring to tests under 
controlled scientific conditions in a laboratory or similar setting 
(Merriam-Webster, n.d.), and field-tested, referring to tests in actual sit
uations reflecting intended use (Merriam-Webster, n.d.), either in place 
or with collected data from the field. Besides, product and process quality 
controls refer to measuring product properties, including safety, and 
measuring process parameters that affect product quality (Luning and 
Marcelis, 2007). Additionally, the data collection element of the quality 
control circle means measuring the product properties and process pa
rameters; the data analysis element involves comparing the measuring 
outcomes against the established norms and limits. The element of 
corrective actions encompasses the process of assessing deviations from 
the norm, determining appropriate interventions, and implementing 
corrective measures (Luning and Marcelis, 2020), and proactive actions 
involve feedforward quality control, focusing on prevention, early 

Table 1 
Industry 4.0 technologies with the type of quality control they applied and their 
aim; quality control circle elements in which those technologies can perform.

Technology* Type of quality control 
and aim of the design

Application of technology 
in Quality Control Circle#

Artificial Intelligence – Implementation status: Laboratory-tested
Neural networks (

Chenchouni and 
Laallam, 2024)

Product (honey) 
quality control: The 
design aims to reveal the 
combined impact of 
various factors (i.e., 
climate zones, honeybee 
breeds, honey extraction 
methods, and beekeeping 
systems) on honey 
quality.

• DA via NN algorithms.

Optical emission 
spectrum-based 
instrument (μPD-OES) 
combined with ML (
Ren et al., 2024)

Product (meat and 
coffee) quality control: 
The design aims to 
facilitate on-site 
evaluation of food 
freshness and 
adulteration detection.

• DC via a designed 
portable device

• DA via ML
• CA and PA via 

assessment of meat 
quality and 
discrimination of 
possible food fraud

Combination of a digital 
camera with ML (i.e., 
convolutional neural 
network) (Przybył 
et al., 2023)

Product (roasted 
coffee) quality control: 
The design aims to 
identify the quality 
classes of Arabica coffee 
beans based on the 
roasting process.

• DC via camera
• DA via CNN

Combination of 
chromatographic 
fingerprinting with AI 
(Squara et al., 2023)

Product (hazelnut) 
quality control: The 
design aims for an 
accurate and multi-target 
quantification method 
which targets quality 
markers of raw hazelnuts.

• DA via AI-smelling 
machine

• PA via decision-makers 
for rancidity level and 
storage quality; origin 
tracers

ML-assisted Raman 
spectroscopy (Zhang 
et al., 2023)

Product quality (i.e., 
microbiological) 
control; the design is 
proposed for real-time 
detection of a panel of 
foodborne pathogen- 
specific molecular 
fingerprint volatile 
organic compounds.

• DC via developed 
portable Raman probe 
to collect fingerprint 
VOCs of foodborne 
pathogens

• DA via ML
• PA via detecting and 

predicting low- 
concentration, complex 
VOC mixtures of food
borne pathogens in the 
field

E-nose combined with 
ML (Pulluri and 
Kumar, 2022)

Product (i.e., beef) 
quality control; the 
design is proposed for 
effective classification of 
beef quality and 
prediction of microbial 
population in beef.

• DC via e-nose,
• DA via ML
• CA and PA via quality 

classification of beef and 
providing feedforward 
information for 
microbial population 
prediction in beef

A combination of High- 
Precision LCR meter 
(inductance, 
capacitance, and 
resistance) with ANNs 
(Mohammed et al., 
2022a)

Product (i.e., date palm 
fruit) quality control; 
The aim is to predict 
quality attributes of date 
palm fruits during cold 
storage based on 14 
electrical properties.

• DC via physicochemical 
and electrical properties 
analyses)

• DA via ANNs
• PA via feed-forward 

ANNs with a back
propagation training al
gorithm for the 
prediction quality of 
date palm fruit

Magnetic Resonance 
Imaging combined 
with ML (Torres et al., 
2022)

Product (i.e., beef and 
pork meat) quality 
control; The aim is to 
predict quality 
characteristics as 
completely as possible to 
offer the meat industry an 
alternative solution to 

•DC via physicochemical, 
instrumental textures and 
sensory analyses
• DA via ML
• PA via prediction of 

quality by 
physicochemical quality 
characteristics of pork 
and beef loins in four 

(continued on next page)
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Table 1 (continued )

Technology* Type of quality control 
and aim of the design 

Application of technology 
in Quality Control Circle#

physicochemical and 
sensory methods.

meat states (fresh, 
thawed, cooked, and 
cured).

A low-cost imaging 
system with a digital 
camera coupled with 
DNN (Setiadi et al., 
2022)

Product (i.e., meat) 
quality control; 
The design is proposed 
for adulteration detection 
in minced beef.

• DC via capturing of 
images with a low-cost 
camera system

• DA via DNN
• CA and PA via 

adulteration predictions 
based on colour and 
texture features

Computer vision system 
combined with ANN (
Hosseinpour and 
Martynenko, 2022)

Product (i.e., shrimp) 
quality control; 
The design aims for the 
real-time evaluation of 
food quality, which is 
explained as a multi- 
dimensional variable 
with objective and 
subjective (e.g., 
consumer perception, 
which are fuzzy values) 
elements.

• DC via real-time mea
surements of quality at
tributes with computer 
vision

• DA via processing of the 
measurable quality 
attributes using ANN

• CA and PA via using the 
real-time quality attri
butes’ predictions of the 
drying shrimp

The camera integrated 
with DNN (Wang 
et al., 2022)

Product (i.e., rice) 
quality control; The 
design aims to automatic 
visual quality estimation 
of rice kernels.

• DC via camera
• DA via DNN
• CA via quality 

estimation of rice 
according to kernel 
flaws classification

A combination of E-nose 
with CNN (Yan and Lu, 
2022)

Product (i.e., rice) 
quality control; The 
design is proposed to 
classify the rice origin 
and detection of rice 
quality.

• DC via an e-nose system
• DA via classification of 

rice origins with CNN, 
which can reflect the 
overall rice quality

Infrared thermography 
camera integrated 
deep learning ((
Estrada-Pérez et al., 
2021)

Product (i.e., rice) 
quality control; The 
design aims to classify 
five different types of rice 
in grain or flour format 
and detect mixtures of 
different rice types which 
act as adulterated 
samples and to ensure 
quality and safety.

• DC via thermographic 
camera

• DA via DL by classifying 
five types of rice of 
different quality

• CA and PA via detecting 
potential adulterations 
resulting from the 
different rice mixtures

Neural network 
integrating an analytic 
hierarchy process 
approach and the 
entropy weight (AHP- 
EW) (Geng et al., 
2021)

Product (i.e., meat) 
quality control; 
The design aims to 
provide an early warning 
approach for assessing 
and controlling food 
safety risks.

• DA via the NN, heavy 
metal, microbial, and 
food additive indexes of 
the meat product are 
compared with the 
threshold indexes

• PA via early detection 
and predictions of food 
safety issues, and taking 
measures to prevent 
potential risks

E-nose combined with 
ML (Viejo et al., 2020)

Product (i.e., beer) 
quality control; the 
design aims to develop a 
portable, low-cost model 
for assessing beer quality 
based on their aroma 
composition

• DC via real-time mea
surements of volatile 
aromatic compounds 
with e-nose

• DA via analysis of e-nose 
data by ML models

• CA and PA via provided 
predictions of important 
volatile aromatic 
compounds and 
intensity of sensory 
descriptors

DoFP polarisation 
camera combined with 
ML (Takruri et al., 
2020)

Product (i.e., apple) 
quality control; the 
design aims to estimate 
the freshness and quality 
of apples in terms of age 
non-invasively and 
determine if they are fit 

• DC via camera
• DA via comparing the 

changes in polarisation 
properties of samples 
over time

Table 1 (continued )

Technology* Type of quality control 
and aim of the design 

Application of technology 
in Quality Control Circle#

for consumption even 
before the external rot 
appears on the fruit.

• CA and PA via 
automated prediction of 
freshness and quality

The thermographic 
camera combined with 
DL (Izquierdo et al., 
2020a)

Product (i.e., honey) 
quality control; 
The design aims for 
qualitative and 
quantitative detection of 
rice syrup in honey (≤8 
% in w/w) as an 
alternative to current 
quality control systems 
and fraud detectors.

• DC via capturing of 
thermographic images 
of the cooling process of 
honey samples

• DA via the neural 
network to the 
classification of honey

• CA and PA via detection 
and quantification of 
honey adulteration

The thermographic 
camera combined with 
DL (Izquierdo et al., 
2020b)

Product (i.e., extra 
virgin olive oil) quality 
control; 
The design aims to detect 
adulterations by 
comparing the 
thermographic profiles of 
pure and adulterated 
extra virgin olive oil 
(EVOO) during its 
cooling process.

• DC via capturing of 
thermographic images 
of the cooling process of 
samples

• DA via the NN
• CA and PA via detection 

and quantification of 
adulteration

FTIR spectroscopy and 
MSI coupled with ML (
Fengou et al., 2020)

Product (i.e., minced 
pork meat) quality 
control; 
The design aims to assess 
meat microbiological 
quality.

• DC via FTIR and MSI 
instruments and 
microbiological tests

• DA via the developed 
ML models

• CA and PA via 
estimation of the 
microbial population

A combination of 
acoustic frequency 
responses with parallel 
CNN-RNN and CRNN 
models (Iymen et al., 
2020)

Product (i.e., dairy) 
quality control; 
The design aims to 
identify dairy products 
with or without non- 
dairy additives (NDA), 
and additionally 
distinguishing organic 
food products from non- 
organic ones.

• DC via designed set-up 
with speaker and 
microphone

• DA via the developed 
NNS

• CA and PA actions via 
detecting non-dairy and 
non-organic additives

A portable and compact 
E-nose combined with 
a NN (Gamboa et al., 
2019)

Product (i.e., wine) 
quality control; 
The design aims for the 
early detection of wine 
spoilage thresholds in 
routine tasks of wine 
quality control.

• DC via E-nose
• DA via the developed 

NN models to classify 
the quality of wines

Computer vision system 
and NIR combined 
with ML (Geronimo 
et al., 2019)

Product (i.e., chicken 
breast meat) quality 
control; 
The design aims to 
identify and classify 
wooden chicken breasts 
(WB) meat which is 
characterised by reduced 
meat quality related to 
undesirable changes in 
visual aspects, 
technological 
characteristics, and 
nutritive properties.

• DC via camera in the 
computer vision system

• DA via the developed 
ML classifiers to detect 
normal and WB samples

ANN combined with 
images taken by 
smartphone (
Hosseinpour et al., 
2019)

Product (i.e., fresh 
beef) quality control; 
The design aims to 
estimate the tenderness 
and quality of the fresh 
beef sample from its real- 
world image.

• DC via smartphone 
camera

• DA via the developed 
BeefQuality app where 
the meat images are 
processed in real time 
according to the 
proposed algorithm

• PA via predicting beef 
tenderness and quality 
from its real-world 
image

(continued on next page)

A.S. Semercioz-Oduncuoglu and P.A. Luning                                                                                                                                                                                             Trends in Food Science & Technology 163 (2025) 105144 

4 



Table 1 (continued )

Technology* Type of quality control 
and aim of the design 

Application of technology 
in Quality Control Circle#

E-nose combined with 
ML (Ordukaya and 
Karlik, 2017)

Product (i.e., olive oil) 
quality control; 
The design is proposed 
for the classification of 
olive oils for quality 
control.

• DC via E-nose
• DA via ML to identify 

and classify olive oil 
types and quality

Digital cameras 
combined with ML (
Olaniyi et al., 2017)

Product (i.e., banana) 
quality control; 
The design aims to 
classify the banana as a 
healthy or defective 
banana and to solve the 
inaccurate standard 
quality product in the 
fruit processing industry.

• DC via digital camera
• DA via ML to in-line 

quality control of ba
nanas by sorting them 
based on the quality 
standards

A computer vision 
system combined with 
ML (Moallem et al., 
2017)

Product (i.e., apple) 
quality control; 
The design aims to 
evaluate apple quality 
based on the surface 
features

• DA via ML to classify 
apple quality

Artificial Intelligence – Implementation status: Field-tested
A Contrastive Self- 

supervised learning- 
based Graph Neural 
Network (CSGNN) 
framework 
Yan et al. (2023)

Product (i.e., dairy) 
quality control: The 
design aims 
contamination warning 
and food quality control

• DA via NN
• CA and PA via early 

warnings for 
contamination

Image processing and 
computer vision 
techniques combined 
with ML (Zia et al., 
2022)

Product (i.e., rice) 
quality control; The aim 
is to assess rice grain 
quality using a non- 
destructive and 
inexpensive approach 
which also presents 
Pakistan’s first 
commercial automated 
rice quality assessment 
system

• DC via flatbed scanner 
hardware

• DA via ML
• CA and PA via assessing 

and controlling the 
quality of the dry kernel

Image sensors combined 
with deep CNNs (
Zhang et al., 2020)

Process (i.e., cane sugar 
crystallisation stage) 
quality control; 
The design aims to 
classify the cane sugar 
images during the 
crystallisation process 
which can affect the final 
sugar product quality

• CA and PA via NN 
classification (the 
degree of vacuum; 
steam pressure; 
concentration of the 
feed; and the 
concentration of the 
syrup in the sugar tank 
can be arranged, and 
automatic control of the 
crystallisation stage can 
increase the quality of 
the last sugar product)

IoT & Cloud – Implementation status: Laboratory-tested
Cloud-based IoT system 

combined with sensors 
(Mishra et al., 2023)

Process (i.e., food 
drying parameters) 
quality control; 
The design aims to 
remote control, alert of 
imminent hazards, 
monitor the microclimate 
parameters and 
investigate the effects of 
the developed system on 
the quality of dried leafy 
vegetables.

• DC via temperature, 
internal relative 
humidity (RH), and 
airflow rate sensors, IoT 
and cloud systems

• DA via data analytics 
with MATLAB

• CA via remote and 
automatic regulations of 
the heater, exhaust fan, 
and humidification unit 
with the microcontroller 
based on readings of 
sensors, and PA via the 
alert that is sent based 
on real-time data ana
lytics through a private 
channel on the cloud 
platform.

IoT-enabled e-nose 
system (Damdam 
et al., 2023)

Product (i.e., meats and 
fresh produce) quality 
control; 

• DC via E-nose carbon 
dioxide, ammonia, 
and ethylene gas  

Table 1 (continued )

Technology* Type of quality control 
and aim of the design 

Application of technology 
in Quality Control Circle#

The design aims to 
monitor food quality by 
evaluating the 
concentrations of volatile 
organic compounds 
(VOCs) and identifying 
beef spoilage.

levels, temperature 
and humidity sensors 
and IoT

• CA via a user interface 
for real-time 
monitoring

Cloud-based IoT 
interconnected to 
sensors (Mohammed 
et al., 2022b)

Process (i.e., date fruit 
cold storage storage) 
quality control; 
The design aims to 
remote control, provide 
risk alerts, and monitor 
the microclimate 
parameters in a cold 
storage room.

• DC via sensors for RH, 
temperature, CO2, 
C2H4, light, 
temperature, electrical 
current, and energy 
consumption, and IoT

• DA via data analytics 
with MATLAB

• CA via controlling if the 
system works, and 
sending alerts in cases of 
emergency

IoT & Cloud – Implementation status: Field-tested
State-of-the-art smart 

production control 
system that utilises 
IoT, big data analytics, 
ML, cyber-physical 
systems and cloud 
computing (Konur 
et al., 2023)

Process (i.e., baking) 
quality control; 
The design aims to 
transform the production 
processes to produce 
good quality products 
based on real-time data- 
driven decision-making 
models.

• DC via sensors, probes 
and IoT

• DA via big data and ML
• CA and PA via real-time 

data monitoring, pre
dicting the best baking 
conditions inside the 
ovens and enhanced de
cision-making

Big data & Data mining– Implementation status: Laboratory-tested
RFID combined with 

IIoT, data mining and 
ML (Song et al., 2024)

Process (i.e., 
environment 
monitoring) and 
product (i.e., ham) 
quality control; 
The design aims to 
implement real-time 
environmental 
monitoring, item-level 
multi-sensing, effective 
food quality assessment 
and prediction, and 
information traceability

• DC via RFID sensors and 
IIoT

• DA via big data and ML
• CA and PA via 

assessment of food 
product freshness and 
prediction of food shelf 
life

Data mining and DL (
Zhou et al., 2023)

Product (i.e., wine and 
glutinous rice cake) 
quality control; 
The designed system is 
proposed to realise the 
standardisation and 
consistency of food 
quality assessment and to 
achieve or exceed the 
accuracy of existing 
technologies.

• DA via data mining to 
find the optimal neural 
network assessment 
model

Big data & Data mining– Implementation status: Field-tested
Data mining with the 

Apriori algorithm (
Jacobsen and Tan, 
2022)

Process quality control; 
The design proposes an 
integrated quality 
monitoring system with 
enhanced data 
visualization which can 
assist quality managers in 
making informed food 
safety decisions.

• CA and PA via 
investigation of quality 
issues at their root and 
taking effective 
measures

The data mining with the 
Apriori algorithm (
Wang and Yue, 2017)

Process (i.e., transit 
time, temperature, 
season, conveyance, 
package, product type, 
and customer 
satisfaction) quality 
control; 
The design aims to timely 
monitor all the detection 
data, automatically pre- 
warn and find food safety 

• CA and PA via highly 
effective real-time food 
safety risk monitoring 
and pre-warning

(continued on next page)
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intervention, and risk assessment by predicting potential issues based on 
current data. The detailed working principle of each proposed I4.0 
technology implementation can be found in the supplementary file in 
Table S4.

Table 1 shows that the most studied I4.0 technology is AI, which 
conceptually encompasses machine learning as a subfield, deep learning 
as a type of machine learning, and neural networks as it is used in deep 
learning (Soori et al., 2023). Similarly, Yu et al. (2025) highlighted the 
growing necessity and interest in AI integration in food systems, driven 
by the 2022 Global Food Security Index (GFSI) call, which underscores 
declining global food security impacting nearly a third of the popula
tion. Despite this, most AI-related studies (26 out of 29) are at the 
laboratory-tested status (e.g., Ren et al., 2024; Squara et al., 2023; Yan 
and Lu, 2022), suggesting that AI’s practical in-field applications in food 
quality and safety control systems are still evolving. Furthermore, 
almost all of the proposed AI implementations are used for quality 
control purposes of products, e.g., coffee (Przybył et al., 2023; Ren et al., 
2024), beer (Viejo et al., 2020), dairy (Iymen et al., 2020; Yan et al., 
2023), meat (Pulluri and Kumar, 2022; Torres et al., 2022; Setiadi et al., 
2022; Ren et al., 2024), honey (Izquierdo et al., 2020a; Chenchouni and 
Laallam, 2024), rice (Wang et al., 2022; Yan and Lu, 2022; Estrada-Pérez 
et al., 2021), fruits (Olaniyi et al., 2017; (Mohammed et al., 2022a-b) 
and olive oil (Ordukaya and Karlik, 2017; Izquierdo et al., 2020b) rather 
than the processes. This might show that the implementation of AI 
technologies nowadays is driven by the demand for ensuring 
end-product quality and safety.

Most AI implementations in food quality and safety control systems 
involve various types of cameras (e.g., digital, thermographic, polar
isation, and smartphone) to mainly identify quality classes (Przybył 

et al., 2023; Olaniyi et al., 2017), detect adulteration (Setiadi et al., 
2022; Estrada-Pérez et al., 2021), and predict quality and safety 
(Hosseinpour et al., 2019; Wang et al., 2022) through food product 
images. In these studies, AI models are trained using these images 
alongside datasets from analytical or sensory techniques for quality and 
safety predictions. Another common tool combined with AI is the elec
tronic nose (E-nose) (Table 1), which detects volatile compounds in 
samples via interactive sensors and converts this data into digital out
puts for statistical analysis (Jiang et al., 2025). The majority of designs 
in the reviewed studies aim to assess and classify quality (Pulluri and 
Kumar, 2022; Yan and Lu, 2022; Viejo et al., 2020; Ordukaya and Karlik, 
2017) and predict the microbial population (Pulluri and Kumar, 2022; 
Gamboa et al., 2019) by training AI with volatile component data and 
datasets from chemical, microbiological, instrumental, and sensory 
tests.

The results also show that while integrated tools are used for the data 
collection element of the quality control circle, AI technology mainly 
serves the data analysis element (Table 1). In the majority of the 
reviewed studies, the obtained outputs and results through I4.0 tech
nology implementation can also support the corrective and proactive ac
tion elements of a control circle, which may show the promising role of 
AI in transforming raw data in an actionable manner and bridging the 
gap between data collection and decision-making. For instance, Zhang 
et al. (2023) developed an ML-assisted Raman spectroscopy system that 
predicts microbiological quality by simulating a spoiled food environ
ment through fingerprint volatile organic compounds (VOC). The results 
demonstrated the potential of the designed system for real-time classi
fication of foodborne pathogens, even at low concentrations and within 
complex VOC mixtures. This application can enable proactive measures 
such as preventing contaminated products from being released to the 
market and reaching consumers. In another study, Iymen et al. (2020)
integrated an acoustic frequency dataset with deep learning models to 
detect non-dairy additives in dairy products, enabling proactive identi
fication of nonconformities such as fraud or contamination and facili
tating corrective actions.

IoT and cloud systems are other widely studied I4.0 technologies in 
quality and safety control systems (Table 1). As a key I4.0 technology, 
IoT enables communication between smart devices for measuring, col
lecting, and analysing variables (Balali et al., 2020; Hassoun et al., 
2023a-b). IoT and cloud designs are often integrated with sensors and 
tools to control process parameters (e.g., in drying, cold storage, 
baking), addressing all elements of the quality control cycle (i.e., data 
collection, data analysis, corrective or proactive actions). However, most 
reviewed studies on IoT indicate laboratory-scale implementations with 
limited field applications (Damdam et al., 2023; Mishra et al., 2023; 
Mohammed et al., 2022b). This result might show that, although IoT is 
not a new technology, its practical utilisation in the frame of the I4.0 
concept is still in the early phase for food quality and safety control 
systems. Similarly, Bouzembrak et al. (2019) reviewed the potential 
applications of IoT in food safety and concluded that it remains a rela
tively novel approach. They stress that, in most studies, proposed IoT 
architectures are primarily theoretical constructs with limited 
real-world implementation, indicating that practical applications in 
food safety are still rare. Besides, they highlight that, according to 
Talavera et al. (2017), IoT applications in agriculture and the food sector 
are still in their early stages of development.

Similar to IoT, big data and data mining, which are often combined 
with other technologies, are predominantly proposed for controlling 
process quality and safety parameters instead of products. Big data is the 
immense amount of digital information generated through various 
digital devices, and data mining involves uncovering hidden patterns 
and relationships within this large volume of raw data (Che et al., 2013). 
These technologies mainly support data analysis and corrective and 
proactive action elements of the quality control circle (Table 1). For 
example, Jacobsen and Tan (2022) designed and implemented a data 
mining prototype to process large volumes of incident data to create 

Table 1 (continued )

Technology* Type of quality control 
and aim of the design 

Application of technology 
in Quality Control Circle#

risks in advance, and give 
some decision-support 
information to maintain 
the quality and safety of 
food products.

Blockchain – Implementation status: Field-tested
Smart contracts on 

Blockchain (i.e., 
Ethereum) combined 
with ML (Yu et al., 
2020)

Product (i.e., peach 
juice) quality control; 
The design is proposed 
for an intelligent quality 
monitoring system for 
fruit juice production.

• DC via smart contracts 
on the blockchain

• DA via ML (comparison 
of the outcome value 
and specified threshold)

• CA and PA via the 
message that the system 
sends to terminate the 
production process or a 
message stating that this 
batch of samples meets 
the standard created 
and stored on the 
blockchain

* The ‘technology’ term involves any I.4.0 technology that is used or combined 
with other tools in quality and safety control systems in food manufacturing.
# DC: data collection; DA: data analysis; CA: corrective actions; PA: proactive 
actions.
RFID: radiofrequency identification; IIoT: Industrial Internet of Things; ML: 
Machine learning; DL: Deep learning; AI: Artificial Intelligence; μPD-OES: point 
discharge microplasma optical emission spectrometer; SPME: solid phase 
microextraction; NIR: near infra-red; VIS-NIR: visible near infra-red; SWIR: 
short wave infra-red reflectance; FL: fluorescence; GC-MS: Gas Chromatography 
Mass-Spectroscopy; NN: neural network; ANN: artificial neural network; DNN: 
deep neural network; CNN: convolutional neural network; AHC-RBF: agglom
erative hierarchical clustering-radial basis function; CNN-RNN: combination of 
convolutional neural network-recurrent neural networks; CRNN: convolutional 
recurrent neural network; HPLC: by High Performance Liquid Chromatography; 
MRI: Magnetic Resonance Imaging; MSI: multispectral imaging; DoFP: Division- 
of-Focal-Plane; MSI: multispectral imaging.
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Table 2 
The identified main technical/technological and managerial categories of the benefits of the Industry 4.0 technology implementations into quality and safety control 
systems in food manufacturing.

Sub-categories Explanation AI IoT and 
Cloud 
systems

Big data and 
Data mining

Blockchain

Technical/Technological Benefits

Contamination detection and 
reliable food safety and quality 
prediction

I4.0 technologies or their combination with other tools could provide efficient and 
high-accuracy prediction, detection and early warning of contaminated samples, 
microbial populations, and foodborne pathogens and provide freshness evaluation 
and quality prediction with robust statistical accuracy.

24 3 2 1

Real-time quality assessment and 
prediction, rapid and effective 
quality monitoring and control

I4.0 technologies or their combination with other tools could provide live and in- 
system assessment, effective sensing, and prediction of food quality and safety and 
deliver immediate results with efficient identification, classification, and estimation 
in minimal computational time.

23 1 2 –

Adaptability and usability with 
other food products, industries 
and technologies

I4.0 technologies can offer adaptive systems with flexibility for integration into 
various technologies, different food products and food sectors and be open to a range 
of development opportunities.

11 1 3 1

Ability to classify the quality of 
food samples

AI or its combination with other tools can provide precise and effective classification 
of different species, spoilage levels, and adulteration.

13 – – –

Regular or continuous monitoring 
and controlling of the quality 
parameters and operations

I4.0 technologies and their combination with other tools could provide continuous 
recording, monitoring and control of process parameters and operations that are 
related to food safety and quality.

6 3 1 1

Adulteration and fraud detection AI, IoT and cloud technologies or their combination with other tools could be 
designed for the effective detection and quantification of food adulteration, helping 
prevent food fraud. They could identify adulterants in various products, such as beef, 
olive oil, and dairy, distinguishing between authentic and adulterated goods, 
including those with harmful substances.

8 1 – –

Non-destructive quality control AI, IoT and cloud technologies or their combination with other tools could provide 
non-invasive, non-destructive, and contactless techniques for quality monitoring, 
assessment, and estimation without altering or damaging the food sample.

7 1 – –

Supporting decision-making and 
rapid response on food quality 
and safety

I4.0 technologies and their combination with other tools could provide operators with 
critical information, enabling quick and effective responses to changes and potential 
issues while supporting more informed decision-making in quality control processes.

3 3 2 –

Supporting product quality 
enhancement and assurance

I4.0 technologies and their combination with other tools could support overall 
product quality improvement, maintaining consistency and assurance

2 3 1 –

High-degree automated quality 
control

I4.0 technologies and their combination with other tools could achieve a high level of 
automation in quality control by replacing tedious, error-prone manual tasks, and 
enhancing efficiency, accuracy, and consistency in the process.

2 3 1 1

Portable and able to on-site 
quality evaluation and 
inspection

I4.0 technologies and their combination with other tools could be portable and be 
able to on-site quality evaluation and inspection.

4 – – –

Enhancing current quality control 
systems

I4.0 technologies and their combination with other tools could improve the 
capabilities of integrated quality control processes and increase the overall quality 
testing capacity.

1 1 1 –

Reference architecture for 
standardized quality assessment

I4.0 technologies and their combination with other tools could provide a reference 
framework that establishes standards in the field of food quality assessment, 
facilitating the creation of a unified and optimal assessment model.

– 1 1 –

Managerial Benefits
Cost-effectiveness and preventing 

additional financial losses and 
expenses

I4.0 technologies and their combination with other tools could be cost-effective, 
focusing on reducing financial penalties, minimizing expenses, and optimizing 
resource use through strategies like reducing human labour, minimizing financial and 
time costs, developing low-cost components, and preventing additional losses (e.g., 
food recalls and product returns).

7 3 3 1

Better food safety and crisis 
management

AI, big data and data mining technologies and their combination with other tools 
could support taking effective measures for food safety and crisis management and 
help establish emergency mechanisms, a priority system for hazard analysis and 
effective measures for safety regulation by analysis of results.

3 – 3 –

Strategy improvement Mainly AI, big data and data mining technologies and their combination with other 
tools could support optimizing manufacturing and warehousing strategies while 
enabling improvements in supply chain management. They could be useful in guiding 
strategic investments and shaping value chains to enhance competitiveness. 
Additionally, they could support food safety control strategies based on scientific 
principles.

3 1 2 –

Traceability and Communication 
Enhancement

AI, big data and data mining technologies and their combination with other tools 
could make implicit knowledge explicit, provide valuable insights, improve 
communication and information sharing, and support the traceability of both quality 
and information.

1 1 3 –

Objective and Unified Decision- 
Making

I4.0 technologies and their combination with other tools could enhance decision- 
making by ensuring objectivity, minimizing human intervention, and reducing risks 
associated with manual operations.

2 2 1 –

Simplified, user-friendly, and low- 
stress operations

I4.0 technologies and their combination with other tools could have low operational 
complexity, be straightforward, have no occupational risk, be user-friendly, reduce 
stress and fatigue, and make it easy for regular users to operate with minimal training.

2 2 1 –

Optimisation of manufacturing 
and quality control systems

AI, big data and data mining technologies and their combination with other tools 
could help optimise manufacturing lines and enhance the effectiveness of food safety 
and quality control systems by providing powerful information.

1 – 1 –

(continued on next page)
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transferable insights within food safety and quality management sys
tems. They introduced a sensor-based system that analyses over 4000 
alarms from a fast-food franchise, monitoring food quality, environ
mental conditions, and corrective actions. Equipped with 37 alarm at
tributes, the system provides real-time data access via a dashboard, 
enabling quality managers to receive alerts on limit violations and 
implement proactive quality control measures. In another study, Wang 
and Yue (2017) developed a food safety pre-warning system for dairy 
producers, integrating data mining technology to support managerial 
decision-making. The system processes food safety data from produc
tion, processing, and transportation, identifying warning rules based on 
frequent item sets. By leveraging temporal and causal relationships, the 
system enables proactive risk detection, with identified abnormalities 
triggering emergency feedback mechanisms to facilitate timely inter
vention. Although the reviewed literature shows a balance between 
laboratory and field-tested applications (Table 1), Marvin et al. (2017)
and Jin et al. (2020) note that despite its potential and successes in 
predicting, monitoring, and controlling food safety, big data imple
mentations are still limited and scarce.

Blockchain shows promise for the food industry but is mainly applied 
to food supply chain traceability (e.g., Arvana et al., 2023; Dey et al., 
2021; Yang et al., 2021), not food manufacturing. Similarly, digital 
twins and 3D printing are used in the agri-food sector for cold food chain 
and transport/distribution, and product development (Defraeye et al., 
2019; Grazioli et al., 2020), with no studies linking them to food quality 
and safety control in manufacturing.

The literature review results show that I4.0 technologies are mostly 
integrated with other instruments and tools and are still at the 
laboratory-tested implementation stage. To advance the implementation 
of field-tested technologies into food quality and safety control, the 
benefits must be clearly communicated and barriers addressed through a 
multidisciplinary approach. Luning and Marcelis (2006, 2009) stressed 
the need to concurrently analyse technological and managerial per
spectives to achieve a more comprehensive and nuanced understanding, 
while Rizzuto and Reeves (2007) highlighted information technology (e. 
g., software, database and communication systems) implementations 
require multidisciplinary research spanning technological, organisa
tional, and human factors.

4. Benefits of industry 4.0 technologies in food quality control 
and safety systems

Table 2 presents the identified technical/technological and mana
gerial benefits in the reviewed studies. The most reported technical/ 
technological benefit is contamination detection and reliable food safety 
and quality prediction ability. All Industry 4.0 technologies contribute to 
this benefit, with AI being the most prominent. Studies demonstrated 
that various I4.0 technologies could effectively predict, detect and early 
warn the contaminated samples (Geng et al., 2021; Yan et al., 2023), 
microbial populations (Pulluri and Kumar, 2022) and foodborne path
ogens (Zhang et al., 2023), and provide freshness evaluation (Ren et al., 
2024; Song et al., 2024) and quality prediction (Geronimo et al., 2019; 
Przybył et al., 2023) with good statistical accuracy. For instance, Geng 
et al. (2021) developed an AI-based early warning system for assessing 

and controlling food safety risks, demonstrated through a case study on 
meat product detection data. The system preprocesses inspection data 
on heavy metals, microbiological contaminants, and food additives, and 
then calculates risk values based on proximity to standard maximum 
limits. A neural network model predicts risk levels from the processed 
data, enabling early warning threshold applications for risk analysis 
with good accuracy. The study highlights AI’s potential in reliable food 
safety prediction. The other most reported technical/technological 
benefit is real-time quality assessment and prediction, rapid and effective 
quality monitoring and control, which point out that I4.0 technologies like 
AI, IoT and big data could provide real-time assessment of quality and 
safety, and deliver immediate results (Table 2). For example, Viejo et al. 
(2020) integrated ML into an e-nose system for real-time beer quality 
prediction based on aroma compounds, while Mishra et al. (2023)
applied IoT in a food dryer for real-time and remote monitoring of 
drying parameters in coriander and mint leaves, directly impacting final 
food quality. Viejo et al. (2020) concluded that the developed 
ML-integrated e-nose system is a reliable and effective tool for real-time 
quality assessment, with potential use in production lines. Similarly, 
Mishra et al. (2023) suggested that IoT-enabled drying systems can 
identify issues in real time and automatically adjust drying parameters 
based on real-time data, thereby facilitating remote monitoring and 
allowing operators to track drying cycles.

Several studies highlighted the benefit of adaptability and usability 
with other food products, industries and technologies. For instance, Dam
dam et al. (2023) proposed an IoT-enabled e-nose to analyse volatile 
organic compounds and detect beef spoilage, noting its applicability to 
other meat types, fruits, and vegetables. Similarly, Izquierdo et al. 
(2020b) developed an AI-integrated thermographic camera system for 
detecting and quantifying adulterations in extra virgin olive oil, 
emphasising its potential use across diverse food products and 
industries.

AI’s ability to classify the quality of food samples is a widely reported 
benefit (Table 2), enabling the classification of different species (Yan 
et al., 2023; Ren et al., 2024; Chenchouni and Laallam, 2024), spoilage 
levels (Gamboa et al., 2019), and adulteration (Izquierdo et al., 2020a). 
For instance, Chenchouni and Laallam (2024) combined neural net
works with traditional analytical techniques to classify honey samples 
based on origin, honeybee breed, extraction method, and beekeeping 
systems. The developed neural network system effectively classified the 
samples based on these factors, demonstrating its applicability for food 
quality assessment. Regular or continuous monitoring and controlling of the 
quality parameters and operations is another key benefit (Table 2). Saihi 
et al. (2021) noted that I4.0 technologies enable real-time monitoring, 
improving root cause identification and process control. For instance, Yu 
et al. (2020) demonstrated a system that continuously monitors quality 
parameters through a three-step process: optimisation, data recording, 
and quality evaluation. During the optimisation process, optimal con
ditions are identified using response surface models based on 
pre-production data, such as volatile compound analysis. In the data 
recording process, smart contracts record key process data during pro
duction on a blockchain system, which serves as the input for evaluation 
models. In the quality evaluation process, another smart contract eval
uates the recorded data using statistical models to assess quality and 

Table 2 (continued )

Sub-categories Explanation AI IoT and 
Cloud 
systems 

Big data and 
Data mining 

Blockchain

Technical/Technological Benefits

Technology-driven 
transformation and culture 
change

AI and its combination with other tools could support the business’s shift toward a 
technology-driven approach, fostering a cultural change that embraces innovation.

– 1 – –

Numbers represent the count of studies that mentioned corresponding benefits out of a total of 38 articles.
Details of references per technology can be found in Table S5 in the supplementary materials.
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detect contamination risks after each production stage. If quality drops 
below a predefined and recorded threshold in the blockchain, the pro
cess automatically halts, ensuring continuous control of the quality pa
rameters and operations.

The literature highlights numerous technical/technological benefits, 
while managerial benefits are less frequently addressed. The most 
commonly reported managerial benefit is cost-effectiveness and preventing 
additional financial losses and expenses (Table 3). Implementation of I4.0 
technologies can reduce penalties, minimise expenses, and optimise 
resource use through strategies like reducing human labour (Zhang 
et al., 2020; Konur et al., 2023), minimizing financial and time costs 
(Yan et al., 2023), developing low-cost components (Setiadi et al., 2022; 
Zia et al., 2022), and preventing additional losses (e.g., food recalls and 
product returns) (Wang and Yue, 2017; Yu et al., 2020). For instance, 
Yan et al. (2023) developed an AI-based early warning system for 
contamination detection in dairy based on physicochemical (i.e., 
lactose, non-fat milk solids, protein, acidity, and fat) and mycotoxin 
indexes (i.e., aflatoxin), which help reduce economic losses, including 
financial penalties and reputational damage, by improving food safety 

and quality control. Another managerial benefit is better food safety and 
crisis management through technologies such as big data, data mining, 
and AI, which enable effective food safety and crisis management sup
porting emergency response systems(Jacobsen and Tan, 2022), and 
enable data-driven priority systems for hazard analysis (Wang and Yue, 
2017; Yan et al., 2023). Strategy improvement is also noted as a benefit of 
these technologies enhancing manufacturing and warehousing strate
gies and improving supply chain management (Squara et al., 2023; Song 
et al., 2024). Additionally, they can guide strategic investments (Konur 
et al., 2023), shape value chains to strengthen competitiveness (Squara 
et al., 2023; Wang and Yue, 2017), and support the development of food 
safety control strategies based on scientific principles (Yan et al., 2023). 
Squara et al. (2023) developed an AI-based augmented smelling ma
chine utilising volatile quality markers (e.g., key aroma compounds, 
spoilage odorants, rancidity levels, and origin tracers) to assess raw 
hazelnut quality. They proposed that this technology implementation 
could serve as a decision-making tool, guiding strategic industry in
vestments and shaping value chains. In another study, Song et al. (2024)
proposed a data mining technology with AI combination for ham quality 

Table 3 
The identified main and sub technical/technological and managerial categories of barriers to the Industry 4.0 technology implementations in quality and safety control 
systems in food manufacturing.

Main categories Sub-categories Explanation AI IoT and 
Cloud 
systems

Big data and 
Data mining

Blockchain

Technical/Technological Barriers

Product-related 
barriers

Product or dataset-dependent 
models and system limitations

The developed models or implemented advanced technologies 
may be dependent on specific products, or product quality 
datasets and need reconfiguration or retraining steps to adapt.

5 – 1 –

Process and 
equipment- 
related barriers

High-quality data and time 
investment requirements

The development and optimisation of models may need 
significant time and computational resources, especially when 
handling large datasets or numerous quality attributes. High- 
quality, diverse, and well-balanced data are necessary to ensure 
more reliable outcomes.

5 2 2 –

Performance and accuracy 
optimisation needs

Achieving reliable, accurate, and efficient model performance is 
still open to improvements due to issues like overfitting, 
misclassification, and imbalanced or low-quality datasets. There 
is a need for further optimisation, exploration of additional 
features, and advanced methods to improve predictions.

5 – 2 1

Production-related 
barriers

Effects of external and 
environmental factors on system 
performance and accuracy

Variations in environmental factors (e.g., ambient lighting, 
noise, or unstable measuring conditions) can adversely affect 
results and reliability.

3 – 1 –

Infrastructure and integration 
difficulties into traditional or 
outdated systems

Incorporating advanced technologies into traditional or 
outdated systems may be a barrier because of the lack of pre- 
existing infrastructure for these technologies. Also, the absence 
of off-the-shelf integration solutions can further complicate the 
transition to digitalisation.

– 3 – –

Managerial Barriers
People-related 

barriers
Human-based errors and security 
concerns

In AI and IoT technologies and their combination with other 
tools, the quality and quantity of model training data labelled by 
non-professionals can cause inaccuracies and inconsistencies. 
Besides, improper handling or interpretation of personal or 
sensitive data may raise security concerns.

2 1 – –

Ethical and social implications Over-dependence on Industry 4.0 technologies can result in 
unemployment. Additionally, conflicts of interest may arise 
when these technologies are used to harmonize processes and 
decisions across diverse groups, such as customers and company- 
internal departments, whose priorities and objectives may not 
align.

– 1 1 –

Needing to improve user 
understanding and acceptance of 
technology

Big data and data mining technologies and their combination 
with other tools may require users to grasp complex concepts, 
such as the interpretation of outputs of these technologies, which 
can be challenging without sufficient training or expertise. 
Limited understanding can be a barrier to the acceptance of these 
technologies.

– – 1 –

Numbers represent the count of studies that mentioned corresponding benefits out of a total of 38 articles.
Details of references per technology can be found in Table S6 in the supplementary materials.
Product-related: barriers to technology implementation related to inherent food product features; Process and equipment-related: barriers to technology imple
mentation related to process parameters and equipment features; Production-related: barriers to technology implementation related to internal circumstances of the 
production facilities, buildings and factories and external environment circumstances (climate, geography etc); People-related: barriers to technology imple
mentation related to decision-making behaviour, commitment and competencies.
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assessment and prediction. They suggested that this system could opti
mise warehousing strategies by monitoring quality loss, while also 
improving supply chain management by providing traceability infor
mation and key physical parameters to supply chain managers and 
manufacturing line controllers.

However, while technical/technological benefits are typically based 
on practical applications, managerial benefits are often theoretical or 
suggested rather than observed. This underscores the need for further 
research, particularly multi-case studies, to better understand the 
managerial impacts of I4.0 technologies in this domain.

5. Barriers to industry 4.0 technologies in food quality control 
and safety systems

Despite all the benefits, several studies highlighted some barriers to 
implementing these technologies into control systems. Identified bar
riers were examined as technical/technological and managerial, and to 
provide a holistic understanding of implementation barriers, they were 
further grouped into main categories, e.g., product-related, process and 
equipment-related, production-related, or organisational-related and 
people-related.

A key technical/technological barrier is the need for high-quality data 
and time investment requirements for data processing, model training and 
computations, which is categorised as a process and equipment-related 
barrier (Table 3). AI implementation can be time-intensive and 
computationally demanding, particularly when handling large-quality 
datasets or multiple-quality attributes. Yu et al. (2025) identified data 
quality and algorithmic transparency as challenges in AI adoption for 
food safety. Chhetri (2024) emphasised that the precise food quality and 
safety predictions by AI models highly depend on the amount of 
high-quality data in the training phase. For instance, Konur et al. (2023)
found that while integrating data across a factory improved process 
coverage, it increased model complexity and slowed training. Similarly, 
Izquierdo et al. (2020b) pointed out that AI training and optimisation 
stages need high computational resources, which can make it slow in 
those stages. Zhang et al. (2023) further discussed the importance of 
high-quality and well-labelled datasets, demonstrating through Raman 
spectroscopy data that better labelling is essential for improving ma
chine learning predictions.

Furthermore, Table 3 shows performance and accuracy optimisation 
needs, as a barrier, especially for AI, big data and data mining technol
ogies to address issues such as overfitting and misclassification. For 
instance, Setiadi et al. (2022) found that their developed imaging-based 
adulteration detection system for minced beef, using a digital camera 
combined with machine learning, was less accurate than other tech
niques (e.g., hyperspectral imaging), suggesting more extensive data 
training was needed for better performance. Another barrier is product or 
dataset-dependent models and system limitations. This barrier is especially 
relevant for AI, big data and data mining technologies, which may need 
reconfiguration or retraining steps to adapt. Estrada-Pérez et al. (2021)
proposed an infrared thermography camera-integrated ML technology 
for detecting adulterated rice samples, but concluded that for other 
types of rice or different additives, a new machine learning model must 
be trained. Similarly, Setiadi et al. (2022) noted that the technology they 
developed is limited to detecting surface adulterants in minced beef, and 
further research is needed to extend its applicability to different meat 
sources, origins, and other variables.

Table 3 also shows the managerial barriers, all of which emerged as 
people-related categories. Among these, human-based errors and security 
concerns have been most frequently mentioned. Manual data labelling by 
non-professionals can affect the quality and quantity of data and can 
cause inaccuracies and inconsistencies, particularly in AI-integrated 
technologies (Geronimo et al., 2019; Wang et al., 2022). Wang et al. 
(2022) highlighted this issue in their camera-integrated ML model for 
rice quality estimation, noting that non-expert labelling often has errors. 
Mishra et al. (2023) also warned that while IoT devices enable 

large-scale data collection, improper management can lead to privacy 
concerns, including the risk of sensitive information being misused or 
compromised.

Industry 4.0 technologies offer substantial benefits, but their adop
tion faces several barriers. Categorising these into product, process and 
equipment, production-related, and people-related aspects enables a 
more structured understanding and targeted solutions. However, our 
techno-managerial analysis shows that managerial perspectives, espe
cially organisational and human factors, remain underexplored. Given 
their critical role in food quality management (Luning & Marcelis, 2020) 
and technology adoption (Rizzuto and Reeves, 2007), these aspects 
warrant greater research attention.

6. Conclusions and recommendations

This review highlights the role of I4.0 technologies in food quality 
and safety control at the manufacturing stage, with AI and IoT emerging 
as the most studied technologies. The findings indicate that AI is pri
marily used for product quality assessment, while IoT is more focused on 
process quality control. However, despite their potential, most imple
mentations remain at the laboratory-tested stage, with limited real- 
world applications. Besides, while AI mostly contributes to the data 
analysis element of the quality circle, IoT supports the data collection 
element. The results also suggest that integrating I4.0 technologies with 
other tools may enhance their functionality and applicability.

The reviewed studies highlight that the mentioned benefits of In
dustry 4.0 technologies in food quality and safety are mostly technical/ 
technological, with a strong focus on contamination detection, reliable 
food safety and quality prediction and real-time quality assessment and 
prediction -primarily enabled by AI, IoT, and big data. In contrast, 
managerial benefits like cost-effectiveness, enhanced food safety and 
crisis management, and strategy improvement are less explored and 
often discussed conceptually.

This study also highlights implementation barriers from the 
reviewed studies, with key technical/technological ones mainly related 
to processes and equipment. Notably, the need for high-quality data and 
the significant time required to train AI models, especially when 
handling large datasets or multiple quality attributes, stand out. Addi
tionally, the studies emphasise that performance and accuracy optimi
sation still need improvement, particularly for AI implementations. 
Managerial barriers, though rarely discussed, are only people-related, 
such as human errors in manual labelling of data that are to be used with 
I4.0 technologies and security concerns that may arise from improper 
handling of data.

Despite growing interest, most of the reported I4.0 technologies 
remain at the laboratory-testing stage, with limited evidence on 
improving implementation efficiency and effectiveness. Since barriers 
are often case-specific and arise post-implementation, further research is 
needed to understand the organisational and technological conditions 
for effective implementation.

This review offers valuable insights for the food industry, quality 
control authorities, professionals, and technology developers, as it 
provides insight into not only current practices but also their multidis
ciplinary impacts. Possible implications of I4.0 technology imple
mentations in food quality and safety systems may be more accurate, 
consistent, and real-time quality monitoring. For practitioners, this im
plies reduced human error and enhanced ability to prevent quality and 
safety issues proactively. For researchers, the findings highlight the need 
to further explore context-specific implementation strategies and the 
multidisciplinary factors influencing effectiveness and efficiency. 
Overall, these technologies hold significant potential to transform food 
quality and safety control, but their real-world application demands 
practical, technological, and organisational alignment.
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