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Keywords: Artificial Intelligence (AD) is reforming the food industry, particularly in food safety and quality control, by enhancing
Artificial intelligence detection, predicting shelf life, and optimizing production processes. This review explores the innovative role of Al,
Computer vision focusing on the integration of machine learning (ML), computer vision, and natural language processing (NLP) in food

Food safety

Machine learning

Natural language processing
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safety systems. Al is transforming food safety by enabling real-time monitoring, predictive analytics, rapid contami-
nant detection, and automation throughout the food supply chain. These technologies reduce human error and allow
quicker responses to safety threats, ultimately preventing foodborne illnesses and improving product quality. Al also
helps to predict and manage climate-induced risks, such as chemical and microbiological hazards linked to extreme
weather and temperature shifts. The review outlines the integration of digital tools such as biosensors and Internet of
Things (IoT) devices and examines Al’s convergence with blockchain and process analytical technologies to enhance
traceability and strengthen food safety management systems. Despite its potential, the widespread adoption of Al is
hindered by challenges such as data privacy concerns, workforce adaptation, and regulatory barriers, while critical
gaps in digital infrastructure, data standardization, and policy support also need to be addressed to enable effective
implementation. The review highlights the importance of ethical frameworks and interdisciplinary collaboration to
guide responsible Al deployment. Emerging tools like neural networks and behavior-based safety assessments can
boost food system resilience. The review concludes by calling for enhanced regulatory cooperation and technological
investment to realize AT’s full potential in creating safer, more sustainable, and efficient food systems.
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Abbreviations

Al Artificial Intelligence

ML Machine Learning

FSMS Food Safety Management Systems

PAT Process Analytical Technology

HACCP Hazard Analysis and Critical Control Point
GMP Good Manufacturing Practices

IoT Internet of Things (IoT)

DL Deep Learning

NLP Natural Language Processing

ANNs Artificial Neural Networks

CNNs Convolutional Neural Networks

3D-FP 3D Food Printing

BDA Big Data Analytics
VBA Visual Basic for Applications

LSTMs Long Short-Term Memory Networks
P Intelligent Packaging

AP Active Packaging

RFID Radio-Frequency Identification

HI Hyperspectral Imaging

2DMs 2D nanomaterials

RASFF  Rapid Alert System for Food and Feed

XAI Explainable Al

ADAT  Advanced Data Analytic Techniques
RNNs Recurrent Neural Networks
RASAR Read-Across-based Structure Activity Relationships

NIRS Near-Infrared Spectroscopy

FTIR Fourier-Transform Infrared
PFAS Per and Polyfluoroalkyl Substances

NAMs New Approach Methodologies

BNs Bayesian Networks

NNs Neural Networks

SVMs Support Vector Machines

FSC Food Safety Culture

EFSA European Food Safety Authority

CEA Controlled Environment Agriculture (CEA)

P-SAFETY Privacy, Security, Accountability, Fairness, Explainabil-
ity, Transparency

SERS Surface-Enhanced Raman Scattering
GSRS21 Global Summit on Regulatory Science
PPE Personal Protective Equipment

FSC Food Supply Chain

CSFs Critical Success Factors

QCA Qualitative Comparative Analysis

TOEH  Technology, Organization, Environment, and Human
E-nose  Electronic nose

ASFs Animal Source Foods

PPC Postpasteurization contamination

FDA Food and Drug Administration

PLS-DA  Partial Least Squares Discriminant Analysis

The food industry has become a significant focus due to its impor-
tance in global food production, distribution, processing, and packag-
ing. Feeding the global population by 2050 requires balancing
sustainability, food security, and safety. Key strategies include reduc-
ing food loss through source reduction and intelligent technologies,
promoting circular food systems, shifting to plant-based diets, and
optimizing protein sources like aquaculture and pastoral systems to
improve efficiency and minimize environmental impact. Sustainable
food security requires evidence-based decisions that avoid repeating
past mistakes, ensure safety, and embrace innovation in food produc-
tion and value chains to achieve a resilient and secure global food sys-
tem (Véagsholm et al., 2020).

Current food safety and quality control systems in the food sector
often fail to effectively prevent microbial and chemical contamination,
eroding consumer trust. To address these challenges, food business
operators and regulators must implement structured food safety man-
agement system (FSMS) based on continuous monitoring and control
of critical parameters across the entire food supply chain. However,
the sector remains fragmented, which impedes the adoption of innova-
tive technologies. The integration of process analytical technology
(PAT), information technologies, and data science offers a promising
solution. By leveraging tools such as cloud computing, data mining,
and artificial intelligence (AI), stakeholders can monitor and ensure
food safety in real time. Additionally, virtualization in the food supply
chain enhances traceability and transparency, supporting better
decision-making. PAT enables online and postprocessing monitoring,
while technologies such as Hazard Analysis and Critical Control Points
(HACCP) and Good Manufacturing Practices (GMP) contribute to a
comprehensive FSMS. Nonetheless, distribution and transportation
remain weak links due to limited control and traceability. To over-
come these barriers, the food industry must embrace digital transfor-
mation, promote interconnectivity, and invest in smart analytical
tools. This approach not only ensures food safety and quality but also
minimizes food waste and supports regulatory compliance, ultimately

enhancing consumer confidence and sustainability in the global food
system (Nychas et al., 2016). (See Table 1).

The integration of Al into food safety and quality control is reshap-
ing global food systems by enabling proactive, data-driven approaches
to risk management. Technologies such as machine learning (ML),
computer vision, and Natural Language Processing (NLP) are enhanc-
ing FSMS, particularly in response to climate change, globalization,
and increasingly complex supply chains. Technologies like drones,
robotics, and smart packaging also contribute to this transformation.
Overall, Al and ML present powerful opportunities to advance sustain-
able, safe, and resilient food systems capable of adapting to current
and future challenges. However, their deployment is hindered by high
costs, infrastructural limitations, and workforce skill gaps. These barri-
ers restrict the integration of Al-based solutions essential for modern
food safety systems.

This review aims to critically examine the growing role of Al, par-
ticularly ML, in enhancing food safety, quality control, and sustainabil-
ity within the global food industry. The paper explores Al applications
in food processing, packaging, and supply chain management, with
emphasis on contaminant detection, shelf-life prediction, sensory eval-
uation, and real-time monitoring. The review attempts to analyze the
use of Al tools such as biosensors, Internet of Things (IoT) devices, and
predictive analytics in high-risk sectors like dairy and seafood. Addi-
tionally, the review aims to investigate AI’s integration with digital
technologies like blockchain and process analytical tools to support
food safety management systems. This study builds on existing
research to offer practical recommendations for improving efficiency,
collaboration, and competitiveness in food safety. While current liter-
ature aims to highlight progress, it also reveals significant gaps, includ-
ing limited real-world applicability and a lack of interdisciplinary
integration. To unlock AI's full potential, more rigorous, scalable,
and context-aware research is required for effective large-scale imple-
mentation. Thus, this review aims to analyze the available evidence,
challenges, and perspectives on the possible role of Al in safeguarding
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Table 1
Al-Powered Solutions in Food Safety and Quality Control
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Subsection Description

Digital Algorithms Key References

Quality Assurance & Spoilage
Detection

Food Safety Monitoring &
Contaminant Detection

Intelligent Packaging & Smart
Labels visual freshness indicators.

Traceability, Supply Chains &
Blockchain

Biosensors, Microneedles & Real-
Time Monitoring

Sustainable Food Systems &
Climate Resilience

Food Fraud, Authenticity & E-
Nose Technology

Public Health Surveillance &
Consumer Safety

Personalized Nutrition &

imaging, LSTM, and hyperspectral sensors.

and residues in real time.

recalls, and food fraud prevention.
freshness and contamination.
prediction, and circular packaging.
ML, spectral data, and e-noses.
recalls, and hygiene monitoring.

Functional Foods

Food Processing, 3D/4D Printing
& Automation

Industry 4.0 & Workforce
Transformation

Multi-Source Data Integration &
Predictive Modeling

personalization
beverage QC, and automated safety checks.
and workforce upskilling.

food risk prediction and management.

Al predicts spoilage, shelf-life, and product freshness with
Sensors, NIRS, and ML models detect pathogens, toxins, allergens,
Al supports packaging with pH sensors, RFID, gas sensors, and
Blockchain and Al enhance traceability, predictive logistics, food
Biosensors and smartphone-connected microneedle sensors track
Al supports resilient food safety, waste reduction, climate-aware
Nondestructive Al tools detect adulteration and authenticity using ML models, classification, PCA,
Mobile Al and sensors enhance consumer safety, food alerts,
Al supports genome-based diets, allergen detection, and food
Al optimizes sorting, food printing, robotics, fermentation,

Al robotics, and smart tools enhance compliance, digitization,

Al merges omics, sensor, weather, social, and logistics data for

CNNs, LSTMs Ding et al., 2025; Singh et al., 2024
Mahmudiono et al., 2022; Moholkar
et al., 2023

CNNs, RFID, smart films, ANN, Nayak & Dutta, 2023; Shirzad &
NLP Joodaky, 2024

Blockchain, Al IoT, QCA, Trollman, 2024; Cavalli et al., 2019
MCDA

CMS, CNNs, smartphone apps

ML, NIRS, RNNs, ANN, e-nose

Jiang et al., 2025; Zhang et al., 2022

Predictive Al, smart sensors,
satellite monitoring

Kuppusamy et al., 2024; Thorsen
et al., 2025
Funes et al., 2015; Anwar et al., 2023

e-nose

Mobile Al, cloud computing, Marvin et al., 2017; Wang et al.,
LLMs 2025

Al-driven models, supervised Theodore Armand et al., 2024;

ML Pandey et al., 2023

CNNs, robotics, DL, neural nets, Bedoya et al., 2022; Hassoun et al.,
rheology models 2023; Liu et al., 2024

10T, Al, digital twins, VBA, job
tracking systems

SVM, BNs, omics, DL,
microbiome models

Akyazi et al., 2020; Chen & Yu, 2021

Taiwo et al., 2024; Wang et al., 2022

food Quality and Safety. By addressing technological, economic, and
operational barriers, this paper outlines a pathway for leveraging Al
to create a more resilient, transparent, and sustainable global food
ecosystem.

Methodology

A systematic review was conducted to examine the role of Al in
food systems. Peer-reviewed articles were sourced primarily from Goo-
gle Scholar and ScienceDirect. Several inclusion and exclusion criteria
were defined to set boundaries for the review to filter search results.
Inclusion criteria focused on peer-reviewed articles that explored the
application of Al in food safety, food packaging, quality assurance, sen-
sory analysis, food processing, and food security. Studies involving Al
tools, especially machine learning, blockchain, IOT, and predictive
analytics within the food industry were included. Exclusion criteria
eliminated non-English articles, opinion pieces, conference abstracts,
and studies not directly related to Al or food safety. Articles were
selected based on their relevance to the research objectives. A total
of 153 articles were reviewed and analyzed to synthesize current find-
ings and identify trends, challenges, and opportunities in the integra-
tion of Al across different stages of the food system.

Overview of artificial intelligence

Artificial Intelligence, a branch of computer science, focuses on
developing systems capable of performing tasks that typically require
human intelligence, such as reasoning, learning, and decision-making.
A key subset of Al is ML, which enables systems to learn from data and
make predictions or decisions without being explicitly programmed
for every task. Over time, Al has evolved from rule-based systems,
which rely on predefined “if-then” logic, to more sophisticated models
like ML and deep learning (DL). While traditional ML methods often
require manual feature engineering, deep learning overcomes this by
automatically extracting complex patterns from raw data, making it
especially valuable in areas such as food safety, where it supports con-
tamination detection and product classification (Gbashi & Njobeh,
2024).

Blockchain technology complements AI by providing secure,
tamper-proof records, particularly useful for ensuring traceability

and data integrity throughout the food supply chain (Zhou et al.,
2022). Al applications like NLP and Computer Vision further enhance
operational efficiency. NLP enables machines to interpret and respond
to human language, while Computer Vision allows analysis of visual
data, useful in agriculture for monitoring livestock and evaluating pro-
duction processes. Beyond food safety, Al empowers organizations
across sectors to unlock hidden value, drive innovation, and make
agile, data-driven decisions. For example, Al can combat misinforma-
tion by validating content and boosting consumer trust. It also sup-
ports personalized nutrition by analyzing dietary needs and
recommending tailored food products. Through real-time data aggre-
gation from various consumer touchpoints, Al enables precise produc-
tion planning and supply chain optimization. These capabilities help
businesses shift from hierarchical models to collaborative, data-
centric cultures, fostering agility and resilience. As a cornerstone of
digital transformation, Al bridges gaps between manufacturing and
commercialization, ensuring long-term value creation and positioning
companies for success in an increasingly digital marketplace.

Role of Al in the food processing

Food is vital for survival, and food science plays a crucial role in
ensuring health through agriculture, processing, and nutrition. Agri-
culture forms the foundation by supplying raw materials and eliminat-
ing hazards. Food processing must meet safety and quality standards,
while nutritional evaluation supports healthy diets. Al is driving a
transformation across the food sector, rejuvenating food science, agri-
culture, nutrition, and industry practices. Its integration into the entire
food chain, from farm to fork, is reshaping how food is produced, pro-
cessed, assessed, and consumed. Advanced Al techniques such as ML,
DL, computer vision, and artificial neural networks (ANNSs) are being
employed to enhance efficiency, sustainability, and food safety at mul-
tiple levels (Esmaeily et al., 2024). In food science, Al enables better
food safety and quality control through tools like electronic noses
and tongues, and real-time sensory analysis. Al-based models assist
in optimizing food formulation, processing, packaging, and distribu-
tion, resulting in greater consistency and lower waste. Evolutionary
algorithms are being used for single- and multiobjective optimization
in food processing systems, offering solutions to manufacturing prob-
lems with high efficiency (Enitan & Adeyemo, 2011). Emerging ther-
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mal modeling methods, including Al-driven simulations for estimating
thermal conductivity and heat capacity, are proving valuable for
designing safer, high-quality food processes.

Al also supports smart agriculture, facilitating soil analysis, crop
prediction, pest control, and precision irrigation, significantly improv-
ing resource use and yields. This integration of Al and IoT devices cre-
ates intelligent systems that monitor environmental factors and
optimize agricultural output while minimizing ecological impact
(Addanki et al., 2022). In the domain of nutrition and health, Al plays
a crucial role in advancing personalized nutrition. Applications include
Al-driven dietary assessment, food recognition apps, and disease-
specific diet planning. Personalized diet recommendations based on
genetic, microbiome, and health data are emerging as powerful tools
for disease prevention and management, particularly for conditions
like diabetes, obesity, and cardiovascular disease (Theodore Armand
et al., 2024). Metabolomics and biomarker-based AI models also con-
tribute to disease diagnosis by linking dietary patterns with health
outcomes.

Al and ML are further enhancing food processing and quality assur-
ance. Technologies such as neural networks and convolutional neural
networks (CNNs) support automation in food quality detection, sort-
ing, shelf-life prediction, and fraud detection. In the dairy industry,
Al optimizes processes like milking, pasteurization, and contamination
monitoring. Smart packaging and noninvasive sensors driven by Al
monitor milk quality and detect adulteration in real time (Alsaedi
et al., 2024; Alves et al., 2021). Al's application extends to food safety
and environmental monitoring. For example, ANN models assist in
detecting pesticide residues via fluorescence spectroscopy and rapid
screening of food contaminants, offering nondestructive, cost-
effective solutions (Mahmudiono et al., 2022). In industries such as
olive oil production, Al supports classification, adulteration detection,
and optimization of chemical properties (Funes et al., 2015). Ulti-
mately, Al is evolving the global food system by making it more effi-
cient, personalized, sustainable, and secure. With increasing
challenges from climate change, population growth, and complex glo-
bal supply chains, Al offers scalable and adaptive solutions. However,
while the potential is vast, much of the work remains in development
stages, underscoring the need for further research, validation, and
implementation (Ikram et al., 2024; Kakani et al., 2020).

The food industry has been reshaped by globalization, technologi-
cal advancements, and changing consumer demands. Al and big data
enhance food safety, production, and marketing, enabling food enter-
prises to improve product quality and meet consumer needs. The
industry 4.0 technologies include smart agriculture, robotics, drones,
and digital twins (Ding et al., 2023). The industry 4.0 technologies,
such as Al, the Internet of Things, big data analytics, and automation,
can be used in modernizing food production industries, including
dairy, juice, bakery, and poultry sectors. These innovations are
enhancing traceability and quality control, reshaping every stage of
the food supply chain, from production to distribution, while improv-
ing efficiency, sustainability, and safety (George, 2024). Smart facto-
ries represent a key development within Industry 4.0, using
interconnected systems to achieve real-time oversight and data-
driven decision-making. By integrating sensors, digital twins, Al ana-
lytics, and ML algorithms, manufacturers can optimize operations,
reduce waste, and improve productivity. Predictive maintenance,
enabled by data from equipment and historical failure patterns,
reduces unplanned downtime. Al vision systems detect defects more
accurately than manual inspection, while robotic automation enhances
consistency and speed in production. These tools allow companies to
become more agile and responsive to market demands, ensuring pro-
duct quality and operational resilience (George, 2024).

The transition to digital manufacturing in the food sector requires a
workforce with new skill sets. As robotics, Al, and digital systems
become integral to operations, there's a growing need for highly skilled
professionals capable of managing and developing these technologies.

Journal of Food Protection 88 (2025) 100621

Akyazi et al. (2020) highlight the importance of identifying current
and future job roles through an automated database, which tracks
competencies and evolving qualifications. This system, built using
Visual Basic for Applications (VBA), supports tailored education and
training programs to bridge skill gaps. Collaboration between acade-
mia and industry is vital to prepare a multiskilled workforce that
can meet the challenges of the digital food economy. Al and big data
are also uplifting food safety management. Kim and Kim (2022)
described how Al enhances the prediction, detection, and management
of foodborne risks. Technologies such as CNNs, next-generation
sequencing, and omics-based profiling allow for real-time detection
of pathogens and proactive risk management. In countries like South
Korea, Al-driven platforms are used to track bacterial outbreaks like
E. coli and Salmonella across the entire agri-food chain. Tools like R,
MapReduce, and the Hadoop ecosystem process large-scale, high-
velocity data, providing actionable insights for food safety operations.

The emergence of Food Safety 4.0 reflects the integration of intel-
ligent biosensors with digital technologies like IoT, smart packaging,
and AL These biosensors enable real-time, noninvasive monitoring of
contaminants, freshness, and spoilage across the supply chain. Innova-
tions in quantum, wearable, and nanotech-based biosensors provide
highly sensitive, multiplexed detection for environmental and food
safety applications. They offer early hazard detection during food pro-
duction, breeding, and processing, creating a transparent, responsive
food system (Chen et al., 2024). In the dairy sector, termed Dairy
4.0, Al, robotics, IoT, and blockchain are transforming traditional
operations, from milk collection to product packaging. Smart systems
enable automated milking, real-time quality monitoring, and
blockchain-enabled traceability (Hassoun et al., 2023). Similarly, in
the beverage industry, robotics, biometrics, and computer vision are
automating quality assessments, especially in hot and nonalcoholic
drinks, replacing manual, time-intensive methods with faster, more
accurate technologies (Gonzalez Viejo et al., 2019).

Al plays a pivotal role in ensuring food authenticity, safety, and
transparency. Gbashi and Njobeh (2024) reported the use of computer
vision, hyperspectral imaging, and predictive modeling for quality
control and hazard detection. These tools combat challenges such as
food fraud and contamination, while enhancing consumer trust and
regulatory compliance. High accuracy in food grading and traceability
boosts public health and confidence in food systems. Al is also central
to the development of new food products and preservation methods.
Thapa et al. (2023) discussed how AI algorithms, combined with
advanced sensors, are used for freshness detection, pathogen identifi-
cation, and food categorization. Al's learning and problem-solving
capabilities assist in optimizing food formulations, quality assessment,
and consumer preference modeling, leading to more tailored and effi-
cient product development.

Liu et al. (2024) examined Al's impact on firm performance in Chi-
na's food processing industry using panel data from Shanghai and
Shenzhen (2010-2021). Their findings indicated that AI adoption
improves productivity, increases demand for skilled labor, and
enhances competitiveness by optimizing production technologies. This
underscores the role of Al not just in technical operations but also in
reshaping labor structures and boosting economic performance at
the enterprise level. The integration of Al with 3D food printing (3D-
FP) technologies is fostering innovation in personalized nutrition.
Bedoya et al. (2022) highlighted the use of Al to design customized,
nutrient-dense food products using alternative proteins from algae,
insects, fungi, and plants. Al aids in optimizing viscosity, rheology,
and texture for 3D printing processes, enabling the creation of foods
tailored to individual dietary needs. Additionally, 4D printing intro-
duces stimuli-responsive materials that adapt based on environmental
conditions, supporting product innovation and sustainability.

Al and big data analytics (BDA) are also improving agricultural pro-
ductivity and logistics. Sharma et al. (2021) explained how neural net-
works and ML algorithms are used for disease detection, yield
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prediction, supply chain optimization, and product authentication. In
food processing, Al enhances drying processes for fruits and vegeta-
bles, optimizing parameters like airflow, moisture, and texture to
maintain quality and extend shelf life (Przybyl & Koszela, 2023). These
Al-driven systems provide consistent quality, reduce costs, and support
automation. Al supports food safety by minimizing human error and
ensuring regulatory compliance. Bendre et al. (2022) and Kumar
et al. (2021) described how Al automates processes like microbial con-
trol, sorting, and grading. By integrating chemical and biological sen-
sors with Al systems, food manufacturers can ensure safety while
boosting operational efficiency. These intelligent systems also improve
hygiene, extend shelf life, and enhance waste management, offering
end-to-end optimization.

ML algorithms can analyze vast datasets to identify patterns, pre-
dict quality issues, and automate decision-making. Goyache et al.
(2001) emphasized that Al can convert human sensory expertise into
structured models for training and evaluation. Abass et al. (2024)
noted that with proper implementation, data preprocessing, model
training, and real-time deployment, Al enables proactive quality con-
trol, minimizing recalls and aligning products with consumer expecta-
tions. The integration of Al and Industry 4.0 technologies is revamping
the food sector, enabling smarter, safer, and more efficient food pro-
duction and processing. These technologies support predictive mainte-
nance, workforce upskilling, personalized nutrition, food safety
monitoring, supply chain optimization, and quality assurance. As glo-
bal food demand rises and supply chains grow more complex, embrac-
ing Al-driven innovation becomes not just an advantage but a
necessity. Food manufacturers that invest in digital transformation
today are positioning themselves as the leaders of tomorrow, resilient,
adaptive, and aligned with the evolving demands of a digital, data-
centric world.

Integrating AI with food packaging

Advanced packaging technologies play a significant role in enhanc-
ing food quality and safety. With rising global demand, innovation in
intelligent packaging is vital. CRISPR-based biosensing is emerging as
a promising tool for ultra-sensitive detection of pathogens and contam-
inants in food packaging, enabling real-time monitoring. Al, particu-
larly deep learning technologies such as CNNs and Long Short-Term
Memory Networks (LSTMs), has reformed food quality inspection
and safety assurance. These tools enable the automated detection of
defects, spoilage, and adulteration through hyperspectral imaging
and spectral sensing, providing accuracy and consistency previously
unattainable through manual inspection. Al-driven IoT packaging sys-
tems further enhance traceability, enabling real-time communication
between producers, regulators, and consumers. Packaging machinery
equipped with Al facilitates predictive maintenance and defect detec-
tion, leading to smoother, error-free production lines (Nayak & Dutta,
2023). Intelligent packaging systems, incorporating sensors, data car-
riers, and Al algorithms, are redefining how freshness, contamination,
and shelf life are managed across the supply chain. These technologies
allow for early anomaly detection and product classification, marking
a significant advancement in food packaging technology (Abekoon
et al., 2024).

The foundation of intelligent packaging lies in its ability to sense,
record, and communicate vital information about food products in real
time. Components such as Radio-Frequency Identification (RFID) tags,
biosensors, gas sensors, and time—temperature indicators support these
systems by constantly monitoring environmental conditions and inter-
nal product states. The synergy between Intelligent Packaging (IP) and
Active Packaging (AP), the latter releasing antimicrobials or antioxi-
dants, offers a powerful, adaptive response to varying storage or trans-
portation conditions (Yam et al., 2005). The application of deep
learning techniques (Xiong et al., 2024) in this context, especially
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when combined with multiple imaging modalities such as thermal,
visual, and spectral imaging, significantly enhances freshness detec-
tion and spoilage prediction. For instance, Al models can accurately
classify the decay stages of fruits based on microbial or volatile com-
pound activity, reducing food waste and economic losses (Li et al.,
2023; Singh et al., 2024). Such innovations are crucial in addressing
global food safety challenges, especially in markets where real-time
monitoring can reduce spoilage and boost consumer trust.

Active packaging has further extended the potential of AI in
enhancing food safety and environmental sustainability. Materials
embedded with antimicrobial or antioxidant agents, particularly
nanomaterial-based films, can now be optimized using ML and ANN.
These tools help formulate more effective and sustainable packaging
compositions by analyzing real-time performance data and environ-
mental conditions. Hyperspectral imaging, in combination with CNNs,
allows for precise classification and detection of food spoilage,
enabling dynamic responses throughout the supply chain (Hussain
et al., 2024). In tandem, nanotechnology is also transforming
biodegradable food packaging. Al aids in optimizing formulations
and assessing the performance of biodegradable materials such as
polylactic acid and nanocellulose, improving durability and function-
ality while minimizing environmental impact. Moreover, Al supports
predictive toxicology and lifecycle analysis to ensure safe use of nano-
materials like silver or graphene oxide, whose potential health risks
still require careful management (Adeyi et al., 2025).

Looking ahead, smart packaging technologies are expected to dom-
inate the sustainable packaging landscape (Yakoubi, 2025). Consumer
preferences are increasingly shifting toward intelligent, sustainable
solutions, with innovations such as pH indicator films, moisture sen-
sors, RFID-based traceability, and Al-driven labels becoming standard.
These tools improve supply chain visibility, enable personalized con-
sumer engagement, and reduce food and packaging waste (Ros-Lis &
Serra, 2023; Nagaveni & Poosarla, 2024). Machine learning models
are also being used in packaging evaluation and development. Natural
language processing can analyze consumer reviews to detect
packaging-related failures, while ML algorithms help predict material
performance in new product development, such as optimizing the
compression strength of ventilated corrugated paperboard (Shirzad &
Joodaky, 2024; Esfahanian, 2024; Piotrowski, 2024). Given the 1.3 bil-
lion tons of food wasted annually, these technologies are vital.
Advanced 2D nanomaterials (2DMs) like functionalized graphene
oxide, integrated with AI systems, are being explored for intelligent
spoilage detection and shelf-life extension, playing a crucial role in
global efforts to reduce food insecurity and environmental harm
(Moustafa et al., 2025).

Role of Al in the food supply chain

Artificial intelligence is facilitating the food supply chain (FSC) by
addressing critical challenges such as food safety, quality control,
traceability, and waste reduction (Pallathadka et al., 2022). Despite
its success in other sectors, Al adoption in FSCs, especially in develop-
ing economies like India, remains limited. Dora et al. (2022) high-
lighted the importance of critical success factors (CSFs) for Al
integration using a conceptual model based on Technology, Organiza-
tion, Environment, and Human (TOEH) dimensions and the rough
SWARA technique. Key CSFs include technological readiness, cyberse-
curity, perceived benefits, regulatory alignment, and customer satis-
faction. Al enables data integration, transparency, and enhanced
coordination across the FSC, thereby reducing postharvest losses and
improving traceability. Machine learning and predictive analytics
assist in demand forecasting, spoilage reduction, and optimal storage,
especially for perishable goods. These innovations underscore the need
for context-specific policies and collaborative efforts among govern-
ments, tech providers, and practitioners to scale AI applications for
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global food safety and sustainability (Dora et al., 2022; Liu et al.,
2023).

Al technologies such as neural networks, support vector machines,
and computer vision are being applied to food safety risk management.
These tools analyze large datasets to predict contamination and spoi-
lage risks, enabling real-time detection through sensor-based monitor-
ing systems (Singh, 2022). AI, when combined with the IoT and
blockchain, offers end-to-end traceability and greater accountability
across the supply chain. For example, RFID tags and wireless sensor
networks can track temperature and humidity, supporting quality con-
trol in cold chain logistics for meat, produce, and dairy (Bouzembrak
et al., 2019). In retail, Al enhances food safety through applications
categorized as visual (e.g., automated inspections), analytical (e.g.,
risk prediction), and interactive (e.g., customer engagement), allowing
faster, data-driven decisions (Friedlander & Zoellner, 2020). Although
Al presents great potential, it must be applied to specific, well-
understood problems with human oversight to ensure ethical and reli-
able outcomes (Qian et al., 2023).

Future-ready supply chains are increasingly adopting hybrid mod-
els that integrate AI, IoT, and blockchain technologies. Blockchain
enhances transparency by securing transactions and reducing fraud,
while AI augments predictive analytics and automation. This evolu-
tion, termed the shift from Supply Chain 4.0 to 5.0, includes human-
robot collaboration, facial recognition, and distributed ledgers to
enable smarter, safer food systems (Ahamed & Vignesh, 2022).
Trollman (2024) suggested that a combination of Al and qualitative
comparative analysis (QCA) can address data complexity and improve
interpretability, aligning with the EU’s Farm to Fork Strategy. These
emerging tools can make food supply chains more resilient, adaptive,
and aligned with consumer and regulatory expectations in a fast-
evolving global landscape (Vegesna et al., 2024).

Al in contaminant detection and quality assurance

Food safety is a global public health priority, with the World Health
Organization reporting 600 million foodborne illnesses and 420,000
deaths annually. Al presents potential in mitigating these risks by
improving food quality control, contamination detection, and supply
chain transparency. Tools such as electronic noses and tongues, com-
puter vision, Near-Infrared Spectroscopy (NIRS) (Mavani et al.,
2022), and even 3D printing are now being integrated with Al to auto-
mate and enhance food safety evaluations (Moholkar et al., 2023). AL
systems are recognized for their speed, scalability, and precision, offer-
ing advantages over traditional inspection and testing methods. Their
application spans across modeling, prediction, and sensory analysis,
enabling industries to make real-time, data-driven decisions. However,
widespread adoption hinges on cross-sector collaboration among reg-
ulators, researchers, and industry stakeholders to ensure ethical
deployment and resilient implementation strategies.

Al technologies like CNNs and Recurrent Neural Networks (RNNs),
particularly Long Short-Term Memory networks, have been widely
applied in quality inspection, adulteration detection, and predictive
monitoring of spoilage. CNNs are highly effective for image-based
quality assessment, such as surface defect detection, while LSTMs han-
dle sequential, time-series data, making them ideal for contamination
risk prediction during storage and transport (Ding et al., 2025). These
technologies significantly enhance operational efficiency, especially
on production lines, where they automate inspection and risk flagging.
In agriculture, Al applications span contamination prevention, biolog-
ical hazard detection, and crop quality monitoring (Raki et al., 2023).
Furthermore, Hyperspectral Imaging (HSI), combined with AL, enables
nondestructive, high-dimensional analysis of food products, detecting
contaminants, spoilage, and quality indicators like moisture content or
ripeness (Nikzadfar et al., 2024). HSI systems powered by Al show
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promising applications in identifying egg fertility, nutritional profil-
ing, and even microbial detection in real-time.

The integration of Al in food risk assessment continues to evolve
with models leveraging big data (Sapienza, 2022) and explainable AI
(XAI). For instance, tools like SHAP enhance model transparency by
identifying key drivers of food safety alerts, such as the presence of
aflatoxins or Salmonella, in datasets like the Rapid Alert System for
Food and Feed (RASFF) (Sari et al., 2025). Data enrichment and aug-
mentation improve model accuracy and help regulators make
informed, timely decisions. Al-powered frameworks can proactively
identify hazards across all supply chain stages, from production to dis-
tribution, especially in fruits and vegetables (Stoitsis et al., 2023).
These systems are complemented by the Read-Across-based Structure
Activity Relationships (RASAR) tool, which provides automated toxic-
ity assessments for food additives with high reliability, significantly
reducing the need for animal testing (Fu et al., 2023). In tandem with
these technologies, cloud computing and IoT facilitate real-time con-
taminant monitoring, offering scalable and responsive food safety sys-
tems (Zhang, 2024).

The shift toward Controlled Environment Agriculture (CEA), such
as vertical farming, has reduced reliance on external factors, yet micro-
bial risks persist. While precision farming generates abundant data, the
use of Al for risk mitigation remains limited due to model and data
constraints (Motzer et al., 2024). Insights from the European Food
Safety Authority emphasize the need for data-driven systems that
leverage crowdsourcing, big data, and real-time analytics to transform
exposure assessment and regulatory interventions (Authority et al.,
2019). Traditional food safety practices like HACCP still form the foun-
dation of risk management, but are increasingly enhanced by AI and
automation technologies. For example, Al-integrated HACCP systems
employ computer vision, light-based sensors, and isochoric freezing
to prevent contamination, manage water quality, and maintain ISO
22000 standards (Awuchi, 2023). These hybrid systems represent
the future of predictive food safety, merging proactive analytics with
proven principles.

Technological convergence has further elevated food safety capa-
bilities. IoT devices equipped with NIR spectrometers can now monitor
food contamination in real-time during production. When combined
with 5G, cloud computing, and blockchain, these systems create trans-
parent, tamper-proof records and support swift product recalls when
contamination is detected, such as wundeclared allergens
(Peddareddigari et al., 2024). Al also supports automated inspections
and hygiene monitoring in retail and food service environments, bol-
stering public trust in food safety (Chavan et al., 2024). Advances in
metabolomics, studying the chemical fingerprints of metabolic pro-
cesses, when integrated with deep learning, offer enhanced microbial
hazard detection. Metabolomic biomarkers, paired with deep neural
networks, enable rapid and precise identification of foodborne patho-
gens, significantly improving the speed and accuracy of risk monitor-
ing (Feng et al., 2024). These developments reflect Al’'s expanding
role in moving the industry toward zero-contamination food systems.

Emerging dietary patterns and environmental shifts are reshaping
the food safety landscape. Increased consumption of plant-based prod-
ucts raises concerns about natural toxins, pesticide residues, and chem-
ical contaminants. Climate change further exacerbates these risks by
influencing toxin levels and pest prevalence in crops. Additional com-
plications arise from packaging materials, such as engineered nanoma-
terials and Per- and Polyfluoroalkyl Substances (PFASs), which may
migrate into food. To tackle these complex issues, Al and New
Approach Methodologies (NAMs) are being adopted for nonanimal,
predictive toxicity testing, offering rapid and ethical alternatives (Liu
et al., 2025). Big data platforms now aggregate diverse data types,
from genomics and sensor data to social media alerts, enabling multi-
dimensional risk assessments. Systems like WHO’s FOSCOLLAB and
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RASFF, along with automated surveillance platforms like MedISys,
allow early outbreak detection and coordinated responses (Marvin
et al., 2017). Mobile phone-based detection, omics data integration,
and smart packaging collectively empower both consumers and regu-
lators in maintaining food safety standards.

In conclusion, Al has become a cornerstone of modern food safety
management, significantly enhancing the speed, accuracy, and resili-
ence of safety systems. By automating risk assessment, improving
traceability, and enabling real-time decision-making, Al reduces con-
tamination risks and ensures safer food for global populations
(Naseem and Rizwan, 2025). As outlined by Kuppusamy et al.
(2024), Al supports sustainable agriculture and public health by opti-
mizing food safety practices and mitigating environmental harm. Com-
puter vision and deep learning are now being adopted for
nondestructive inspection of fruits, vegetables, and other perishable
goods (Khan et al., 2021). Al-driven food safety systems promise to
modernize the global food supply chain, creating safer, more sustain-
able, and more responsive systems for the future.

Al-driven sensory evaluation

The increasing consumer demand for high-quality food has cat-
alyzed the development of artificial sensory systems, such as electronic
noses, tongues, and computer vision. These technologies replicate
human senses to assess food characteristics like aroma, flavor, and
appearance. Using sensors, including conductometric, potentiometric,
and amperometric types, combined with data analysis tools like artifi-
cial neural networks and principal component analysis, artificial sen-
sory systems now play a critical role in food quality control,
authenticity verification, and production monitoring. Since their
inception in the 1960s, these systems have evolved into reliable tools
for evaluating freshness, detecting adulteration, and ensuring product
consistency. For instance, electronic noses identify specific odor pro-
files by analyzing volatile compounds, while electronic tongues focus
on the chemical composition of liquid foods. Their integration into
automated quality assessment frameworks offers advantages over tra-
ditional sensory evaluations, including improved accuracy, speed, and
objectivity (Sliwinska et al., 2014).

Beyond sensory replication, artificial intelligence is also addressing
long-standing challenges in food modeling and design. The complex
structure of food has traditionally limited its inclusion in predictive
mathematical models, especially for nutritional properties and cooking
transformations. Al-driven solutions now enable the creation of digital
twins of foods, automated models capable of predicting changes such
as texture and nutrient bioaccessibility, as demonstrated in studies of
pasta during cooking (Mengucci et al., 2022). This approach signifi-
cantly reduces dependence on costly, labor-intensive physical experi-
ments. In parallel, electronic nose (e-nose) technologies, enhanced
by machine learning algorithms, are advancing nondestructive food
quality evaluation across industries, including meat, dairy, oils, sea-
food, tea, and coffee. These systems enhance accuracy, minimize
human error, and offer scalable, cost-effective solutions. Despite these
advancements, future efforts must focus on developing unified plat-
forms for seamless data integration and real-time analysis (Anwar
et al., 2023). Together, these innovations signal a transformative shift
toward smarter, faster, and more sustainable food quality
management.

Al in food safety evaluation and decision making

Food safety is critical in preventing foodborne illnesses and
includes key practices such as cleanliness, proper food separation,
thorough cooking, maintaining safe temperatures, and using safe
water and raw materials. Key practices include maintaining tempera-
tures below 5 °C or above 60 °C to inhibit bacterial growth, using safe
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water and ingredients, and ensuring staff training. These protocols pro-
tect public health and reduce contamination risks across the food
chain. In recent years, Al and ML have emerged as transformative tech-
nologies in food safety, offering real-time monitoring, predictive ana-
lytics, and intelligent automation. Al algorithms enable rapid detection
of pathogens and can predict potential risks based on environmental
data, which significantly reduces response time and enhances preven-
tive measures (Erkinjon & Feruz, 2024). Machine vision systems and
sensors assist in quality control by identifying product defects more
efficiently than human inspectors. Al also supports sorting, grading,
and shelf-life estimation, which contributes to waste reduction. By
integrating AI with technologies like blockchain and IoT, the food
industry benefits from improved traceability, optimized inventory
management, and predictive maintenance, resulting in enhanced food
safety and supply chain resilience.

The integration of Al into food production and safety monitoring is
part of a broader digital transformation that leverages big data, natural
language processing, and deep learning for greater accuracy and speed
in detecting and mitigating risks. These technologies allow for auto-
mated inspections, compliance monitoring, and early detection of
safety concerns, helping industries meet regulatory standards and con-
sumer expectations (Chhetri, 2024; Holzinger et al., 2023). In the era
of big data, Al, and digital technologies are transforming food safety
by enabling real-time monitoring, data visualization, and more effi-
cient oversight (Chen, 2021). AI applications such as computer vision,
robotics, and deep learning enhance key stages of food production,
from sorting and grading (Filho et al., 2024) to packaging and supply
chain optimization. These technologies improve product consistency,
reduce waste, and support traceability through blockchain systems.
Al-assisted quality control and predictive maintenance further stream-
line operations. Overall, integrating Al into food processing strength-
ens food security, promotes sustainability, and aligns production
with evolving consumer and environmental demands (Mengistu &
Ashe, 2024). Al's applications span across every stage of food produc-
tion, from quality assurance in frozen and thawed meat to defect
detection in high-value crops like Piarom dates (Qiao et al., 2024;
Azimi & Rezaei, 2024). Through explainable and transparent algo-
rithms, Al facilitates more sustainable food processing practices, align-
ing with global goals for responsible consumption and ecosystem
preservation. Its integration into life sciences and environmental mon-
itoring further expands its role in supporting long-term food security
and safety.

ATs future in food safety also hinges on the quality and representa-
tiveness of data used in training algorithms. As highlighted by
Altenburger and Ho (2019), high-quality datasets from sources like
genomic surveillance, supply chain audits, and satellite imagery can
enhance risk prediction and response. Advanced Data Analytic Tech-
niques (ADATs), including machine learning and hyperspectral imag-
ing, allow for early hazard identification and proactive intervention,
transforming food safety into a data-driven science (Benefo et al.,
2022). In agricultural innovation, Al-driven models support sustain-
able farming methods, alternative protein sources, and personalized
nutrition (Lugo-Morin, 2024). The ongoing evolution of Al in the food
industry promises smarter, more efficient, and sustainable approaches
to quality control, risk management, and global food system resilience.

Innovative applications of machine learning in food safety

Machine learning is used in optimizing food processing by automat-
ing routine processes, improving food safety, packaging, and delivery
systems. ML techniques, including supervised and unsupervised learn-
ing, data preprocessing, feature engineering, model selection, and
optimization, are being leveraged to enhance production efficiency,
reduce waste, and personalize consumer experiences. ML is widely
used for packaging, labeling, ingredient optimization, and even pre-
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dicting consumer behavior, allowing for smarter, more tailored food
production strategies (Pandey et al., 2023). Particularly in fresh pro-
duce, ML identifies optimal storage conditions, preserving the quality
of fruits and vegetables. Integration with nanotechnology enables pre-
cise data analysis, which supports quality control, defect detection,
and the development of more effective packaging systems. Addition-
ally, ML contributes to personalized nutrition labeling by categorizing
ingredients, allergens, and nutrients, ensuring regulatory compliance
and transparency. These innovations support better traceability, more
responsive logistics, and the anticipation of market demand, ulti-
mately leading to smarter and safer food systems.

Different ML models, such as Bayesian networks (BNs), neural net-
works (NNs), and support vector machines (SVMs), have demonstrated
significant predictive capabilities in food safety applications. BN excels
with structured data, while NN proves more effective for unstructured
data like images (Wang et al., 2022). These models are further
enriched by the integration of advanced technologies such as IoT sen-
sors, social media data, and satellite imagery, enabling rapid and reli-
able food safety monitoring. The early—stage yet promising
application of ML in risk prediction is enhanced by these expansive
datasets, forming a robust foundation for food safety interventions.
Tools that incorporate nontraditional data sources, such as crowd-
sourcing and online platforms, are already showing promise in real-
time risk identification and are becoming central to food safety inno-
vation (Mu et al., 2024).

The increasing complexity of food safety risks, driven by global
trade, climate change, and emerging pathogens, necessitates intelli-
gent, real-time monitoring systems. Al and ML now support early
warning systems by analyzing structured and unstructured data from
diverse sources, including weather trends, consumer sentiment, and
logistics data. Predictive microbiology, a key discipline in food safety,
has been reformed by ML models such as random forests and artificial
neural networks (Taiwo et al., 2024). These technologies enable accu-
rate shelf-life prediction, spoilage estimation, and microbial risk
assessments by simulating complex microbial ecosystems and environ-
mental variables. Combined with whole genome sequencing and
metagenomics, ML enhances detection capabilities for emerging risks.
Tools such as time-temperature indicators embedded with AI and IoT
technologies help maintain cold chain integrity, providing real-time
feedback that enhances food preservation and public health.

Big data are central to the transformation of food safety systems,
with machine learning enhancing risk assessment and regulatory com-
pliance. Principle-based models like P-SAFETY — Privacy, Security,
Accountability, Fairness, Explainability, and Transparency ensure that
ML applications in food safety maintain ethical and regulatory integ-
rity (Sapienza & Vedder, 2023). Machine learning also advances
beyond traditional detection methods like PCR and culture-based tests
by increasing sensitivity and speed. ML can identify pathogens such as
E. coli and Pseudomonas aeruginosa, trace sources of contamination, and
even forecast outbreak potential (Onyeaka et al., 2024). When com-
bined with IoT and blockchain, ML enables seamless traceability and
enhances consumer trust. The European Food Safety Authority (EFSA)
underscores the importance of advanced tools, such as Al, omics, and
multicriteria decision analysis, for evidence-based regulatory decisions
in an increasingly complex data landscape (Cavalli et al., 2019).
Machine learning is upgrading the food supply chain by enhancing
speed, accuracy, and decision-making, addressing challenges in safety,
quality, and efficiency for scalable, cost-effective production (Kaviani
et al., 2022).

In a globalized food economy, ML enhances productivity and resi-
lience across the entire value chain. By automating inspection tasks,
minimizing human error, and improving quality assessments, ML con-
tributes to food safety, efficiency, and competitiveness (Kler et al.,
2022). The use of ML in early warning systems enables regulatory bod-
ies to act on risks before they escalate, reducing foodborne disease out-
breaks and enhancing global public health protection (Rohrs et al.,
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2025). Data science plays a complementary role by integrating lab
reports, supply chain data, and consumer feedback to detect inconsis-
tencies and contamination (Whig et al., 2024). Moreover, techniques
like surface-enhanced Raman scattering (SERS) have gained impor-
tance in food safety due to their sensitivity and compatibility with
ML. Machine learning powered SERS enables the identification of
chemical residues, pathogens, and even food additives with greater
speed and accuracy (Dong et al., 2024), enhancing real-time food anal-
ysis and enabling nondestructive quality assurance.

Machine learning’s scope continues to expand, particularly in tack-
ling foodborne illnesses that affect millions globally. From predicting
antibiotic resistance and tracking pathogens to assessing risks in
ready-to-eat and thermally processed products, ML is increasingly
embedded in food safety systems (Pujahari & Khan, 2022). Al also sup-
ports the creation of smart detection hardware and inspection systems
tailored for USDA-FSIS-regulated foods. Applications of Al extend into
regulatory frameworks by enabling predictive modeling, decision sup-
port, and risk assessment (Yu et al., 2024). Smart sensors, 10T, block-
chain, and deep learning contribute to improved traceability, fraud
prevention, and transparency. Technologies like hyperspectral imag-
ing, automated visual inspection, and real-time data analytics are
being integrated into food safety platforms, enhancing accuracy and
reducing recall rates. As global food processing expands, widespread
implementation of ML and Al will be essential for ensuring safety,
enhancing quality, and supporting proactive risk intelligence
(Stoitsis & Manouselis, 2023). These systems not only modernize tradi-
tional methods but also align food production practices with global
standards and sustainability goals.

Impact of sensor and biosensor technologies on food safety

The integration of biosensors and ML has opened new frontiers in
food safety assessment by enhancing sensitivity, speed, and real-time
analysis. While biosensors have long been employed to detect micro-
bial contamination, chemical residues, and allergens in food products,
their standalone performance is often limited by accuracy and data
complexity. The addition of ML algorithms, particularly supervised
and unsupervised learning, enables improved signal processing and
pattern recognition, allowing biosensors to perform multifactorial
analyses in real-time. These smart systems can optimize food safety
protocols and offer scalable, end-to-end monitoring capabilities. By
analyzing biosensor data through ML, the system can detect anomalies
more accurately and rapidly, supporting early interventions and qual-
ity assurance in food production (Zhou et al., 2024).

In parallel, the One Health approach, which integrates human, ani-
mal, and environmental health, complements the application of
biosensor and ML technologies by emphasizing systemic, cross-sector
collaboration. Traditional diagnostic tools like ELISA and PCR, while
precise, are resource-intensive and time-consuming. Biosensors, rang-
ing from whole-cell to affinity-based types, are now being deployed
across agriculture, livestock, and packaging systems to enable real-
time contaminant detection. These innovations align with the One
Health framework’s goals for cost-effective, scalable diagnostics and
preventive health strategies. For instance, a smart spoilage monitoring
system combining CNNs and sensor-based [oT technologies has proven
effective in extending the shelf life of fresh produce. This system uti-
lizes CNNs to classify fruits and vegetables with 95% accuracy, while
embedded sensors adjust environmental conditions like humidity and
temperature, sending real-time alerts to mobile devices (Grasso et al.,
2022; Sonwani et al., 2022).

Further advancements in food safety have been driven by the con-
vergence of Al, sensor technologies, and intelligent biosensors.
Smartphone-enabled biosensing platforms, 3D-printed devices, and
Al-driven neural networks are now enabling point-of-care food safety
diagnostics that are both portable and cost-efficient. For instance,
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smartphone biosensors can perform real-time colorimetric analysis
and data processing through cloud-based platforms. Additionally,
biosensing systems like electronic noses and tongues replicate human
senses to detect complex food mixtures. These tools are particularly
valuable in low-resource settings, offering alternatives to conventional
methods that often require sophisticated lab infrastructure. As demon-
strated in the detection of Salmonella or allergens, Al-enhanced
biosensors provide real-world solutions that reduce testing time, cut
costs, and empower frontline decision-makers (Zhang et al., 2022).

Al, image processing, and sensor technologies are transforming
quality assessment in the food industry by enabling nondestructive,
real-time evaluations of product attributes such as size, shape, micro-
bial presence, and defects. Advancements in nanotechnology and
biotechnology have enhanced sensor precision, while digital tools like
the IoT, blockchain, and data analytics ensure traceability, hazard
detection, and efficient recalls across supply chains. Al-powered ana-
lytics improve early identification of food safety issues, while digital
sensors maintain optimal storage conditions to prevent spoilage
(Chen & Yu, 2021; Ali Eltabey, 2023). These innovations strengthen
food safety, transparency, and efficiency from production to
consumption.

Further breakthroughs include intelligent sensing systems using
optical, electrochemical, and machine olfaction technologies inte-
grated with machine learning and edge-cloud computing for enhanced
accuracy, authenticity, and decision-making (Jiang et al., 2025). Novel
solutions like the colorimetric microneedle sensor, paired with a CNN-
enabled smartphone app, allow rapid, user-friendly meat freshness
detection via pH-induced color changes (Wang et al., 2024). Al-
based shelf-life prediction systems (Yang et al., 2025) using machine
vision and spectroscopy outperform traditional methods, reducing
waste and improving sustainability. As Al continues to evolve, it
enables smarter, adaptive food safety management aligned with global
public health and regulatory demands (Rashvand et al., 2025).

Food safety using integration with IoT, blockchain, and digital
ecosystems

Technologies like Al, big data analytics, and blockchain are proving
transformative in addressing safety risks across production, process-
ing, distribution, and retail. Al tools, including machine learning and
deep learning, are used for predictive analytics, anomaly detection,
and decision support throughout the food lifecycle. Big data processes
vast datasets from IoT sensors, genomic platforms, and social media to
enable real-time traceability and contamination risk prediction. Block-
chain ensures transparency through immutable records, strengthening
stakeholder trust. These innovations are applied across the supply
chain, from smart sensors monitoring farm conditions and AI tools
optimizing processing and quality control, to IoT systems ensuring
transport conditions and blockchain enhancing data integrity. Efficient
infrastructure for data handling is vital, with NoSQL databases like
MongoDB offering scalable storage solutions and tools like Apache
Flume and ElasticSearch enabling rapid data flow and querying
(Chhetri, 2024).

A promising model integrates blockchain, Al, IoT, and edge com-
puting to modernize food safety. In a pilot study, this integrated sys-
tem increased spoilage detection accuracy by 25% and improved
response time by 30%, offering a scalable solution to longstanding
food safety issues such as contamination, inefficiency, and fraud
(Kamran & Sundarakani, 2024). These innovations are further sup-
ported by regulatory evolution, greater consumer awareness, and sci-
entific advances. Technologies such as predictive Al, innovative
preservation techniques, and functional ingredients like probiotics
and bioactive peptides contribute not only to food safety but also to
health promotion. Global regulatory bodies are adapting, and initia-
tives like the Global Summit on Regulatory Science (GSRS21) have
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highlighted the importance of real-world data and Al to enhance reg-
ulatory decision-making and global collaboration (Tan et al., 2025;
Thakkar et al., 2023).

Broader global trends, climate change, urbanization, and shifting
demographics are creating new challenges for food safety, such as
increased pathogen risks, antimicrobial resistance, and disrupted sup-
ply systems. Addressing these requires risk-based, proactive strategies
incorporating Al, biosensors, blockchain, and genomic surveillance.
Precision agriculture and automated technologies offer earlier inter-
ventions, while food safety culture, shaped by leadership and
employee engagement, ensures these measures are sustained. Evolving
regulatory models now emphasize outcome-based frameworks and
ethical data use. Importantly, resilience in global food systems
demands context-specific approaches, particularly for low-income
and smallholder farming communities. Harmonizing innovation, regu-
lation, and cultural change is essential for building safe, sustainable,
and equitable food systems globally (Thorsen et al., 2025).

Role of Al in behavioral monitoring and safety culture

Artificial intelligence is uplifting food safety by enhancing three
core pillars: monitoring, evaluation, and intervention. Al-assisted mon-
itoring systems enable precise, unobtrusive tracking of critical food
safety behaviors such as hand hygiene and personal protective equip-
ment (PPE) compliance, minimizing human error and ensuring consis-
tent standards. Evaluation tools powered by Al and large language
models provide advanced data analytics to assess food safety culture,
producing actionable insights that empower companies to take proac-
tive measures. These insights inform tailored Al interventions, includ-
ing real-time feedback, personalized training, and communication
tools, that promote behavior change and foster a strong food safety
culture. Together, these Al-driven systems form a continuous improve-
ment cycle, dynamically monitoring, assessing, and correcting behav-
iors to enhance public health outcomes and industry compliance
(Wang et al., 2025).

Traditional food safety management systems often rely on lagging
indicators that identify issues after they occur. AI, however, supports
a shift toward leading indicators, which focus on predicting and pre-
venting potential food safety failures. Through behavioral data analy-
sis, such as observing workplace habits and cultural norms, Al can
anticipate risks before they escalate. This shift to a data-driven
approach enables early detection of deficiencies in human factors, con-
tributing to stronger preventive measures and reduced instances of
contamination and recalls. Al-powered prediction models can analyze
behavioral trends across the workforce, enabling organizations to
make more informed decisions and implement timely interventions.
By combining Al capabilities with behavioral science, food safety sys-
tems can become more robust, adaptive, and responsive to emerging
challenges (Kudashkina et al., 2022).

The growing complexity of global food supply chains has intensi-
fied the need for advanced tools to safeguard quality and safety. Al
technologies, including machine learning, computer vision, robotics,
and IoT devices, are significantly improving food safety through
real-time monitoring, pattern recognition, and automated decision-
making. For instance, computer vision detects contaminants, while
machine learning can predict pathogen outbreaks. IoT sensors allow
for continuous monitoring of environmental conditions throughout
the supply chain. Moreover, causal inference techniques, such as Cau-
sal Directed Acyclic Graphs, enable deeper analysis by identifying
actual cause-and-effect relationships rather than mere correlations.
This emerging fusion of Al and causal modeling elevates food safety
science to a more predictive and preventive discipline (Palakurti,
2022). In practice, Al tools like GPT models have also shown promise
in enhancing the implementation of the HACCP system, offering tai-
lored guidance across the food supply chain (Tzachor, 2024). Overall,
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these AI innovations signal a shift in food safety management, foster-
ing more predictive, preventive, and resilient food systems worldwide.

Role of Al in food security

Artificial intelligence is rapidly transforming food safety, quality, and
security by enabling real-time contamination detection, predictive risk
modeling, and enhanced compliance monitoring. Al-driven technologies
automate defect detection, shelf-life prediction, and product consistency
verification, leading to improved food quality and safety standards. Addi-
tionally, Al supports food security by optimizing resource use, forecasting
crop yields, and streamlining supply chains, thus reducing losses and
operational costs. Integration with advanced food processing techniques,
like high-pressure processing, ultraviolet treatment, and cold plasma, fur-
ther enhances microbial safety and product quality. Beyond these appli-
cations, Al facilitates food valorization by converting food waste into
valuable resources and mitigating risks in dynamic and complex environ-
ments (Dhal and Kar, 2025). Moreover, Al contributes to sustainable food
systems through production and safety innovations in alternative pro-
teins such as edible insects and microalgae, addressing population
growth and environmental challenges (Rugji et al., 2024).

The increasing impact of climate change on food systems
(Ejedegba, 2024) has underscored the need for predictive tools that
can address emerging food safety, quality, and availability risks. Rising
temperatures and extreme weather events exacerbate microbiological
hazards, requiring sophisticated modeling and risk prediction across
the entire food chain. Al, combined with other advanced technologies,
enhances resilience by integrating diverse data streams, from crop and
livestock production to postharvest management and waste reduction.
It supports precision agriculture, real-time monitoring, and smart
farming, aligning with global sustainability goals such as Zero Hunger.
Al also improves crop management, soil irrigation, pest control, and
operational efficiency, especially in vulnerable regions like Sri Lanka,
helping mitigate resource depletion and shrinking agricultural land
challenges (Kutyauripo et al.,, 2023; Chamara et al., 2020). By
automating farming tasks, optimizing crop health, and enabling
demand-driven supply chains, Al reduces environmental impacts and
promotes healthier food systems, representing a pivotal opportunity
to reshape global food security sustainably (Kaur et al., 2023).

AT’s application across supply chain management, food production,
sensory science, and personalized nutrition is propelling the food
industry with smarter, more efficient, and consumer-tailored solutions.
Key Al methodologies, including expert systems, fuzzy logic, artificial
neural networks, and genetic algorithms, support predictive mainte-
nance, quality assurance, product innovation, and waste reduction.
The integration of Al with advanced sensors enables real-time moni-
toring, intelligent packaging, and accurate shelf-life prediction, which
enhances food safety and operational efficiency. For example, Al
frameworks combining Radial Basis Function neural networks with
Genetic Algorithms effectively forecast nonlinear sales patterns in per-
ishables like fresh milk, reducing waste and lost sales while improving
sustainability (Doganis et al., 2006; Zatsu et al., 2024). Al-powered
robotics and machine vision streamline food handling and quality
assurance, supporting the four pillars of food security: availability,
access, utilization, and stability. These technologies facilitate data-
driven automation, improved decision-making, and resilience through-
out the food supply chain. Commercial applications, such as green-
house monitoring and logistics optimization, highlight AI's potential
to create adaptable, sustainable food systems that meet global
demands efficiently and responsibly (Sahni et al., 2021).

Field applications of Al in food safety

Artificial intelligence is advancing food safety by enabling real-time
detection of pests, diseases, and contaminants through advanced tech-
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nologies such as spectral analysis, machine vision, and predictive ana-
lytics. Al-powered sensors and ML algorithms enhance traceability and
regulatory compliance, while blockchain ensures data transparency
across the supply chain. At the consumer level, tools like edge comput-
ing and colorimetric sensors offer on-the-spot assessments of food
freshness (Yin et al., 2025). Al applications are increasingly tailored
to specific food safety challenges, addressing issues like pesticide resi-
due detection, pathogen identification, and spoilage forecasting. Pub-
lic health is also benefiting from AI innovations. For example,
Menichetti et al. (2023) developed an ML algorithm to classify levels
of food processing, revealing that over 73% of the U.S. food supply
is made up of ultra-processed foods, strongly associated with chronic
conditions like cardiovascular disease, type 2 diabetes, and accelerated
aging. Their findings suggested that even modest dietary shifts toward
minimally processed foods can significantly improve health outcomes.
Al-enabled labeling systems and access to real-time processing data
can help guide healthier consumer choices, supporting preventative
healthcare strategies (Menichetti et al., 2023).

Animal-source foods (ASFs) have also seen significant improve-
ments with AI integration into HACCP systems. Techniques like
near-infrared (NIR), Fourier-transform infrared (FTIR), and Raman
spectroscopy, paired with ML, enable real-time detection of anomalies
in meat, dairy, and seafood (Revelou et al., 2025). Smartphone sensors
and hyperspectral imaging offer precise traceability and fraud detec-
tion. Convolutional neural networks and LSTM networks process
image data, while interpretable ML models like SVMs and random for-
ests ensure explainable, reliable outcomes. Global databases such as
WHO’s GEMS and the EU’s RASFF are now feeding into early warning
systems. Additionally, Al-based image-processing systems, utilizing
preprocessing and segmentation algorithms, are being deployed for
automated spoilage detection and quality grading (Hemamalini
et al., 2022).

Advancements in food inspection systems are further driven by the
fusion of spectroscopy, chromatography (Yi et al., 2024), mass spec-
trometry, and biosensors with ML, enhancing both speed and precision
(He et al., 2024). Portable, interpretable, and hybrid Al models are
increasingly prioritized. Foerster et al. (2024) stressed the need for
interdisciplinary collaboration to ensure regulatory compliance and
data standardization. Furthermore, Li et al. (2025) highlighted the
importance of deep learning, meta-learning, and better data structur-
ing for achieving Al’s full potential in food systems. Al's role within
Industry 4.0 and the emerging Quality 4.0 framework, incorporating
digital twins and smart sensors, further underscores its impact on
safety, sustainability, and resilience in the global food supply (Bisht
et al., 2025).

Postpasteurization contamination (PPC) by gram-negative bacteria
continues to challenge the dairy industry, affecting the shelf life of
HTST- and vat-pasteurized milk. The study of Murphy et al. analyzed
fluid milk spoilage data from 23 facilities (2015-2017) and surveyed
quality management practices to rank PPC risk factors using multi-
model inference and conditional random forest. Key factors associated
with increased PPC included poor cleaning and sanitation, weak GMP
adherence, container type, lack of in-house product testing, and
absence of a dedicated quality department. These findings highlight
critical intervention points and demonstrate how machine learning
can manage correlated, unbalanced data for improved food safety
and decision-making (Murphy et al., 2021). da Silva Pereira et al.
(2024) explored the use of a portable NIR spectrometer to screen for
subclinical mastitis in milk, a condition that affects milk quality and
safety. Milk samples collected across five Brazilian regions over two
years were analyzed using PCA, Partial Least Squares Discriminant
Analysis (PLS-DA), RF, and SVM models. Lactose content was the
key differentiator between mastitis and nonmastitis milk. PLS-DA
achieved 78% accuracy. RF had the highest sensitivity (78%), while
SVM excelled at detecting nonmastitis milk (81%). Applying the
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Isolation Forest algorithm improved RF and SVM precision by up to
25%, enhancing overall model performance.

Artificial intelligence is evolving food safety and inspection ser-
vices, particularly within USDA-FSIS, by offering transformative tools
that enhance public health protection (Cheng, 2024). Its integration
highlights both complexity and opportunity, as researchers and indus-
try leaders pursue innovative solutions to strengthen food system resi-
lience. AI applications, such as predictive analytics, supply chain
tracking, and automated sanitation monitoring, improve safety out-
comes and regulatory compliance. Furthermore, Al supports the devel-
opment of safer food additive alternatives. While U.S. Food and Drug
Administration (FDA) workforce reductions present challenges for reg-
ulatory oversight, they also offer the industry a chance to adopt
responsible Al strategies. Companies embracing Al will better navigate
regulations and prevent foodborne illnesses (Minsk et al., 2025). FDA
is enhancing traceability to swiftly identify contaminated food sources,
enabling faster recalls and stronger prevention (FDA, 2024). Through
FSMA Section 204, it promotes harmonized data, digital technologies,
transparency, and predictive analytics. The FDA is also deepening its
understanding of Al to boost regulatory efficiency, exploring machine
learning for targeting high-risk seafood imports, adverse event detec-
tion, synthetic dataset testing, and drug application timeline predic-
tions (FDA, 2022a). In phase three of its Al-Imported Seafood Pilot,
the FDA uses Al and ML to address global supply chain risks (FDA,
2022b). Additionally, new guidance supports iterative, safe Al-
enabled device software function improvements (FDA, 2023).

Recent advancements demonstrate the growing role of Al and deep
learning in managing perishable food products. Gong et al. (2023)
developed a portable smartphone-based sensing platform using a col-
orimetric indicator bar and a CNN model, achieving 96.2% accuracy
in real-time meat freshness prediction. The system, built on VGG16
architecture and a watershed algorithm, delivers results in under
30 s. Similarly, Javanmardi and Ashtiani (2025) employed CNNs with
transfer learning to assess mushroom freshness, achieving accuracies
of 94.10% (white button), 89.11% (oyster), and 86.36% (shiitake)
using ResNet-50 and MobileNet-V2 models. These nondestructive, effi-
cient methods enhance postharvest quality control and reduce spoi-
lage. Moreover, Simsek (2024) highlighted AI’s broader application
in perishable goods management, from demand forecasting to quality
monitoring, with proven success in companies like Coles, Walmart,
and Migros. Integrating Al with blockchain may further boost trans-
parency and sustainability. The Casino Food Co-op’s processing facility
in Australia is using Al and UV sanitization to enhance worker hygiene
and reduce contamination risks. The plant makes hygiene and quality
assurance critical, where Al-driven systems monitor staff compliance
with handwashing, PPE use, and foreign object control. Automated
sensors and UV equipment further ensure sanitation. This aims to
improve hygiene outcomes through continuous monitoring and refine-
ment (McDonald, 2024).

Limitations and constraints in applying Al to the food industry

The widespread adoption of artificial intelligence and machine
learning in the food industry is fraught with a broad array of chal-
lenges that span technical, financial, ethical, regulatory, and societal
dimensions. Financial challenges are among the foremost barriers, par-
ticularly for small and medium-sized enterprises and stakeholders in
low- and middle-income countries. High upfront costs for Al system
acquisition, integration, and maintenance, combined with limited
access to advanced infrastructure and skilled personnel, create sub-
stantial obstacles. Data quality and availability further hinder Al adop-
tion; food systems often rely on fragmented, inconsistent, or nondigital
data sources, complicating model training and interoperability. Con-
cerns over privacy, intellectual property, and data misuse also deter
collaboration and data sharing. Ethical concerns such as algorithmic
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bias, lack of transparency, and potential misuse of Al systems, espe-
cially in high-risk domains like food safety, impact public trust and
regulatory confidence. Resistance to technological change, digital illit-
eracy, and workforce shortages deepen the implementation gap. Reg-
ulatory challenges compound these issues; many jurisdictions lack
cohesive Al guidelines, while differing global data privacy laws inhibit
cross-border collaboration and scalability.

Al adoption in the food industry faces several technical challenges,
including poor data quality, limited model generalizability, high com-
putational demands, and outdated infrastructure. The opaque nature
of deep learning models raises trust and compliance concerns, espe-
cially under strict legal frameworks like FSMA and GDPR. Many Al sys-
tems also struggle to scale or adapt to evolving food safety risks. Small
and medium enterprises are particularly burdened by potential job dis-
placement and the need for retraining. While AI adoption is growing
globally, regional progress varies widely due to differences in infras-
tructure, regulations, and economic and policy priorities. Technical
integration is also difficult. Legacy systems are not always compatible
with modern Al tools, and advanced methods like Explainable AI or
federated learning require substantial computational resources.
Sensor-based systems face reliability issues due to environmental vari-
ability and a lack of standardization.

As Al becomes integral to food safety operations, companies must
address legal and ethical risks tied to Al failures. Faulty Al decisions,
such as misjudging contamination or shelf-life, can lead to food-
borne illness, product recalls, financial loss, regulatory penalties,
lawsuits, and reputational harm. Accountability often lies with the
food company using the AI, especially in the absence of due dili-
gence (e.g., lack of validation or oversight). To mitigate liability,
firms should validate Al tools, ensure human oversight, document
processes, and follow regulatory updates from agencies like the
FDA and EFSA. Clear legal frameworks and standards are essential
for safe, responsible Al implementation in food safety. Furthermore,
many Al innovations remain confined to academic research, failing
to scale due to reproducibility issues and regulatory uncertainty.
Cybersecurity threats and unresolved liability concerns pose addi-
tional risks. Without clear legal frameworks, accountability for Al-
driven decisions remains ambiguous. Lastly, limited collaboration
between the public and private sectors and a lack of shared plat-
forms and goals hinder coordinated progress. Overcoming these
multifaceted constraints will require strategic investments, regula-
tory reform, ethical foresight, inclusive innovation, and sustained
stakeholder engagement to fully realize Al's potential in transform-
ing food systems.

Prospects and pathways for future research

The future of artificial intelligence and machine learning in food
safety and quality assurance offers opportunities that promise to
reform the industry. The future of Al in food systems promises trans-
formative advances in safety, sustainability, and personalization. Al-
powered sensors and IoT devices will enable continuous, high-
resolution monitoring of food environments, allowing for early detec-
tion of microbial, chemical, and spoilage risks. This shift from reactive
to proactive food safety management will significantly enhance public
health protection. Coupled with blockchain and federated learning, Al
will ensure secure, transparent, and traceable food supply chains,
strengthening consumer trust through tamper-proof data integrity. In
agriculture, Al-driven technologies like drone surveillance, intelligent
machinery, and precision farming will optimize inputs, detect crop dis-
eases in real time, and enhance environmental monitoring. Adaptive,
intelligent packaging will dynamically respond to storage conditions,
extending shelf life and reducing food waste. Personalized nutrition,
supported by biometric data analysis, will enable tailored dietary rec-
ommendations, improving public health outcomes.
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Advancements in explainable AI will improve the transparency of
automated decision-making, building trust among regulators, industry
stakeholders, and consumers. In low- and middle-income countries,
mobile Al applications and crowdsourced data will democratize access
to food safety tools, supporting local capacity building and timely
responses to emerging threats. Global collaboration and harmonized
data standards will be essential to closing food safety gaps and promot-
ing equitable access. AI will also enhance regulatory compliance
through automated inspections and standardized testing protocols,
while supporting the transition to circular food economies by optimiz-
ing resource use and minimizing waste. Deep learning and computer
vision will advance quality control, incorporating consumer feedback
through sensory analysis technologies like emotion detection. As Al
continues to evolve, ethical implementation — rooted in fairness,
inclusivity, and transparency — will be critical to its success. With con-
tinued investment, cross-sector collaboration, and adaptive regulation,
Al and machine learning will become foundational to building resili-
ent, sustainable, and future-ready global food systems.

Conclusion

Al applications are proving essential in tackling critical food safety
issues such as microbial contamination, chemical residues, and spoi-
lage, particularly under the strain of climate change, globalization,
and increasingly complex supply chains. These global pressures are
intensifying vulnerabilities within food systems, making them more
susceptible to microbial contamination, chemical residues, spoilage,
and food fraud. As traditional safety frameworks struggle to keep pace,
Al provides the advanced capabilities needed for proactive and predic-
tive food safety management. Al technologies, such as machine learn-
ing, deep learning, computer vision, and natural language processing,
are enabling food systems to shift from reactive models to data-driven,
preventive strategies. These tools can analyze vast datasets, detect
anomalies, recognize emerging hazards, and generate real-time
insights. In high-risk sectors like the dairy industry, where products
are highly perishable and sensitive to temperature changes, Al proves
particularly impactful. Integrated with IoT devices, biosensors, and
imaging technologies, Al facilitates real-time monitoring, automated
quality control, and predictive maintenance. For example, by analyz-
ing temperature fluctuations and microbial test results, Al can forecast
spoilage risks, optimize shelf-life predictions, and reduce waste. Com-
puter vision systems further enhance visual inspections by identifying
contamination and quality defects faster and more accurately than
manual methods.

Throughout the supply chain, AI enables continuous environmental
and process monitoring, helping producers maintain food safety stan-
dards and regulatory compliance. In processing, Al improves efficiency
through automation, fault detection, and process optimization. Smart
packaging technologies powered by AI monitor freshness and can
detect early signs of spoilage, offering both safety and convenience
to consumers. In quality assurance, Al’s use of computer vision and
sensor data allows for the precise identification of microbial, chemical,
and physical hazards. Al-driven sensory evaluation systems ensure
consistent product quality by analyzing flavor, color, and texture attri-
butes. The integration of Al with IoT, blockchain, and federated learn-
ing systems enhances traceability, data sharing, and trust among
stakeholders. This creates more transparent and resilient food ecosys-
tems, where real-time data flow supports rapid responses to potential
safety threats. Al also contributes to strengthening food safety culture
through behavioral monitoring, which helps assess worker compliance
and identify unsafe practices. On a broader level, Al plays a critical
role in promoting food security. It improves resource efficiency,
reduces postharvest losses, and helps producers adapt to climate vari-
ability by enabling smarter agricultural and distribution strategies. The
concept of Food Safety 4.0 encapsulates this digital transformation,
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highlighting the convergence of AI and digital technologies to create
intelligent, adaptive food systems.

However, realizing the full potential of Al in food safety comes with
its own set of challenges. Key issues include data privacy, algorithmic
bias, lack of regulatory clarity, and uneven access to technology, partic-
ularly in developing regions. Al systems must be transparent, auditable,
and inclusive in their design and implementation. Ethical deployment
and equitable access are essential to prevent the deepening of existing
inequalities within the global food system. To address these challenges,
significant investments are needed in digital infrastructure, education,
and innovation. Cross-sector collaboration between governments, indus-
try, academia, and civil society will be crucial to develop responsible Al
frameworks. With coordinated global efforts, Al can help build a food
future that is not only safer and more efficient but also sustainable, inclu-
sive, and resilient to emerging threats.

In conclusion, this review underscores the pivotal impact of artifi-
cial intelligence and machine learning in reshaping the modern food
landscape. From enhancing safety protocols and optimizing quality
assurance to promoting sustainability, intelligent technologies are
driving significant advancements across the supply chain. By integrat-
ing innovations such as biosensors, [oT platforms, and predictive sys-
tems, the industry is better equipped to manage risks, ensure
freshness, and streamline operations. Additionally, the convergence
of AI with blockchain and analytical frameworks offers new avenues
for achieving transparency and accountability. Despite its promise,
Al adoption faces hurdles requiring collaboration and focused interdis-
ciplinary research efforts. This review not only highlights the current
capabilities of Al-driven solutions but also presents a forward-
looking perspective on constructing a more robust, data-informed,
and eco-conscious global food infrastructure.
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