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A B S T R A C T

Background: The integration of artificial intelligence (AI) represents a revolutionary advancement in the global 
food safety paradigm, particularly in the transition from historically reactive measures to predictive and pre
ventive methodologies. In the past, laws concerning food safety were created mainly to address emergencies and 
prevent both adulteration and obvious contamination. However, recent AI developments have made it possible to 
handle pathogen detection, assess risks and monitor the supply chain more quickly, accurately and efficiently.
Scope and approach: This critical review analyses significant historical milestones, from ancient practices through 
medieval regulations to transformative discoveries of the industrial era, and ultimately towards contemporary 
technological integration.
Key findings and conclusions: AI can indeed be a valuable tool in enhancing the efficiency of food safety regu
lations, and it is a natural progression in the historical transition toward increased acceptance of AI by public 
sector institutions. Convolutional neural networks, hyperspectral imaging, and blockchain-based traceability 
demonstrate how AI has enhanced food safety management by detecting and preventing issues early on. This 
review highlights the significant challenges that remain, including data availability, the opacity of algorithms 
(the “black box” problem), substantial implementation costs, and specialized skill requirements. We outline the 
progression from reactive, historically driven food safety regulations to proactive AI-powered predictive and 
preventive strategies, examining the associated strengths, limitations, opportunities, and threats. Lastly, the 
review provides policymakers, those in the food sector, and academics with the knowledge and guidance they 
need to adopt and effectively apply AI technologies to enhance food safety.

1. Introduction

To understand how artificial intelligence (AI) can help us deliver 
food deemed safe for human consumption, we first need to recognise 
that AI is not only a tool that needs to be enforced, but is also a natural, 
historical transition based on established concepts. For example, the 
United Kingdom government has taken significant steps to promote the 
adoption of artificial intelligence (AI) in the public sector through some 
key initiatives. First, the Department for Science, Innovation and 
Technology (DSIT) has published an “Artificial Intelligence Playbook” to 

guide the safe, responsible, and effective use of AI in government or
ganisations. Secondly, a new government Digital Service was estab
lished in January 2025 to unite efforts in grasping the opportunities of 
technology and AI under DSIT. These two institutions, the Cabinet Office 
and DSIT, will ultimately work together to develop a clear strategy and 
strong leadership for AI adoption in the public sector. The imple
mentation of AI, especially in food safety management, can enhance our 
understanding of how public health can be better protected and how this 
can be more effectively translated into policy when considering a his
torical perspective.
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Hence, historical documents highlight that food is an essential item, 
provided by governments to keep people alive and ensure their survival 
at any cost, as declared by the British Government during the famine in 
Ireland in 1846 (Mokyr, 2025). This documented historical evidence 
indicates that food safety was, until the second half of the 19th century, 
primarily viewed as a food supply issue without any consideration of its 
implications on human health. However, without a genuine intention to 
provide food that is also safe for consumption, the government also is
sued instructions to Soup Kitchens to follow precise recipes, which 
include the thermal treatment of vegetables for soup preparations 
(Miller, 2012). The earliest documented food regulations date back to 
the Babylonian period (1700 B.C.) and were written in the Code of 
Hammurabi, with later references in Mesopotamian texts (Gallagher & 
McKevitt, 2019, pp. 239–271; Lásztity et al., 2004). The Book of Levit
icus, written around 1400 B.C., through the Old Testament, made it 
forbidden to eat animals that died naturally while establishing proper 
slaughter techniques for hygiene purposes to limit carcass contamina
tion (C. Griffith, 2006; Lásztity et al., 2004). Fermentation was used by 
ancient Egyptians, as well as the Mosaic law, to produce bread and beer, 
as these processes provided essential nutrition while protecting against 
contaminated water consumption (Gallagher & McKevitt, 2019, pp. 
239–271). The laws enacted provisions to prevent the ingestion of un
safe meat (Lásztity et al., 2004). Records show that food contamination 
has frequently endangered lives – Alexander the Great might have suc
cumbed to typhoid fever from Salmonella-infected food or water in 323 
B.C., according to scholarly analysis (Lásztity et al., 2004). During their 
military campaigns and sea expeditions, Greeks and Romans sustained 
their food supplies through salting and smoking techniques to protect 
meat and fish. Observational experience led to the creation of preser
vation techniques, which later provided the foundation for microbio
logical discoveries.

Convolutional neural networks, currently used to understand the 
role of AI in food safety, can also serve as a model to describe food safety 
measures implemented over the past centuries worldwide. Across the 
ancient world (Fig. 1), food quality laws aimed to curb adulteration and 
spoilage. In ancient India, over 2000 years ago, regulations prohibited 
tampering with grains and fats (Lásztity et al., 2004). Chinese writings 

and Hindu texts also allude to concerns about food purity (Lásztity et al., 
2004). The use of spices, such as pepper, cloves, and cinnamon, became 
widespread not only for their flavour but also for their preservative 
properties (Van der Veen & Morales, 2015).

These spices were believed to have antimicrobial properties, which 
helped prolong the shelf life of food and prevent spoilage. The origins of 
food safety can be traced back to ancient times, with early practices such 
as inspecting meat in Roman markets to remove rancid products. The 
Roman Empire developed an impressively organised state food control 
system; records indicate that the Romans enforced standards to protect 
consumers from fraudulent or substandard produce (Fortin, 2023; Or
ganization, 2018). Under Roman law, rules governing the sale of food 
became as detailed as some modern legislation (Lásztity et al., 2004). 
For instance, the Roman writer Pliny the Elder, in the 1st century A.D., 
documented merchants using poisonous additives to improve wine’s 
taste, warning that “many poisons are used to adapt wine to our tastes” 
and cautioning that such tampered wine is not healthy (Maestro et al., 
2022). Notably, most ancient food laws were intended to prevent deceit, 
such as diluting wine or selling spoiled goods, but this had the side effect 
of protecting public health. The integration of all the measures pre
sented in Fig. 1 can currently be achieved by AI and described through 
the principle of convolutional neural networks (CNNs). This review aims 
to provide a historical perspective and facilitate an understanding of the 
need for AI implementation in food safety. Moreover, we strive to 
outline the benefits of using AI in managing and delivering food safety, 
as well as to understand the challenges posed by the sector and its 
stakeholders. Through various consultations, we understood that the 
best way to explore the value of AI integration is to introduce AI as a 
natural transition with a historic perspective (Fig. 2).

2. Food safety approach during the medieval period and its 
likely impact on present-day AI implementation

A successful AI application in food safety regulatory institutions is 
based on our ability to collect sufficient and high-quality data for 
network implementation. These types of data have and will always 
include information from microbiological controls, transportation, 

Fig. 1. Food safety convolutional neural networks based on a historical approach. Created with Biorender.com.
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ingredient quality, chemical safety, and other relevant factors. Food 
safety regulations were first developed in the medieval period by Eu
ropean local authorities, who initiated basic controls to prevent food 
vendors from selling spoiled or adulterated products (Gallagher & 
McKevitt, 2019, pp. 239–271). During this period, various food regu
lations, along with market inspection systems, were also introduced to 
ensure food safety in public food markets.

The European guilds took responsibility for food safety by devel
oping specific rules that butchers, fishmongers, and bakers needed to 
follow to ensure the safety of their products. The early forms of food 
regulations evolved into the modern food safety regulations that exist 
today (Knežević et al., 2021). City authorities, along with monarchs, 
created standardised versions of previously unwritten rules, one of the 
first ways of creating and transmitting information. The Assize of Bread, 
enacted by King John in 1202, established that bakers could not add 
peas or beans to their dough while setting mandatory weight standards 
for wheat-based bread (Mahajan & Gupta, 2010). The first English food 
regulation established under King John during the Middle Ages aimed to 
standardise bread measures and protect customers from exposure to 
poor-quality ingredients that threatened their safety. The first food law 
was introduced during the reign of Henry III in 1266, primarily con
cerning the weight and price of bread and beer. Much later, between 
1730 and 1776, the Tea Acts were introduced, which prohibited the 
adulteration of tea. These acts also banned the use of sloe, liquorice, or 
previously used tea in new products. The records demonstrate that Eu
ropean laws from the medieval period enforced standards for beer and 
wine quality and banned spoiled meat or fish, along with market 
cleanliness rules (Organization, 2018). Medieval towns punished people 
who sold “corrupt” or days-old meat through fines or banished them to 
the town square, as the population recognised that spoiled meat would 
threaten their health, despite a lack of microbiological understanding. 
The 1516 German beer purity law, known as Reinheitsgebot, allowed 
only barley, hops, and water in brewing beer to protect beer quality from 
dangerous additives – an early food safety law acknowledged for pre
venting toxic herbs and spoiled grains in beer production (Dornbusch, 
1998; Yates, 2023).

Apart from Europe, food regulations during this period incorporated 
both religious mandates and cultural restrictions. During the medieval 
caliphates, Islamic law and the Hisba (market inspector) system 
enforced fair food trading practices by inspecting markets to prevent 
merchants from adulterating food products by Qur’anic anti-fraud rules. 
Religious dietary laws of Judaism and Islam implemented both hygienic 
procedures during slaughter. They banned certain foods that decreased 
foodborne threats, such as pork, to prevent trichinosis and the spoilage 
of rotten meat(C. Griffith, 2006). Various modes of regulation were 
implemented across Middle Age territories to control food safety stan
dards. By modern standards, these laws remained preliminary, primarily 

targeting obvious threats from rot, filth, and fraud. This shift represents 
the beginning of a process that eventually led to the formalisation of 
food safety regulations during the industrial era (C. Griffith, 2006). 
Indeed, the actual implementation of all this data during medieval times 
was by no means based on coordinated storage and usage of data; 
however, it likely improved consumer safety and reduced mortality 
rates. Highlights, however, that presently AI can harvest the abundance 
of food safety sectoral data and provide immense benefits to public food 
safety and health.

3. Industrial age impact on the transition to the present day AI

Nowadays, the implementation of AI can be successfully applied in 
food safety domains mainly because the data available is not only based 
on observational conclusions, as in medieval times, but is further 
enriched through technological and regulatory developments. So, what 
are the industrial age revolutionary discoveries and policy regulations 
that make today’s AI implementation possible? The microbiological 
aspect of food safety became a palpable issue since the invention of the 
microscope by Antonie van Leeuwenhoek (1632–1723), which facili
tated the visualization and confirmation of bacteria in rainwater. During 
the 19th century, as industrialisation and urbanisation swept through 
society, it immediately necessitated new food safety legislation. The 
combination of manufacturing at scale and cross-country food distri
bution created numerous pathways through which contamination and 
fraudulent practices could occur, ultimately leading to severe conse
quences, including deadly outcomes.

As a consequence, many governments, both in Europe and world
wide, established multiple food laws in the late 1800s to combat public 
health emergencies (Lásztity et al., 2004). The development of food 
hygiene regulatory frameworks primarily emerged due to an increase in 
human fatalities related to foodborne pathogens. For example, the 
widespread infection of Trichinellosis (trichina worm infection) through 
undercooked pork meat impacted 19th-century Germany to such an 
extent that the country documented more than 12,500 cases, which 
claimed 5 % of the patients recorded between 1861 and 1890 (Hinz, 
1991). As a consequence, it was not until the 19th century, with the 
development of commercial heat processing by Nicolas Appert and Louis 
Pasteur, that food microbiology made significant progress(C. J. Griffith, 
2006).

Adulteration scandals also prompted reform. Unlike today, when AI 
can access information widely available through various databases, 
profiteers in the industrial sector routinely employed deleterious 
methods during food modification, presenting safety risks to consumers. 
The Sale of Food and Drugs Act of 1875 strengthened previous food 
safety regulations from 1860, following public anger after twenty people 
died during the 1858 Bradford poisonings caused by arsenic-tainted 

Fig. 2. The proposed aim of the review is to examine the historical transition to AI in food safety (B.C. – Before Christ; AI – Artificial Intelligence). Created with Bior 
ender.com.
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candy in England (London, 2014). Public food inspectors working 
within these chemical contamination regulation frameworks played an 
additional role in reducing microbial food spoilage, as they penalised 
food products that appeared unwholesome under defined purity stan
dards. Journalism, referred to as muckraking journalism, revealed 
deplorable work conditions in American food manufacturing industries 
during this period.

AI can currently process disease, food microbiological, or chemical 
composition data due to the revolutionary discoveries made during the 
Industrial Revolution, which made this linkage possible. The Theory of 
disease, proposed by Louis Pasteur and Robert Koch, established the 
scientific principle linking microbial agents to the development of 
sickness through their co-discovery. Later, William Mansfield Clark and 
Harold Lubs significantly contributed to the developed microbiology 
and food safety by creating the methyl red and Voges-Proskauer tests in 
1915 (McDevitt, 2009). These tests brought advanced weapon systems 
to Enterobacteriaceae family bacterial identity investigations. The Clark 
and Lubs buffers are a set of solutions created by these scientists to 
stabilise pH levels in multiple biochemical and microbiological experi
ments across a broad pH spectrum(Bower & Bates, 1955). Food safety 
regulations in the United States experienced their initial federal enact
ment during the late 19th century, as citizens demanded protection from 
contaminated and adulterated food products. Upton Sinclair’s novel 
“The Jungle” inspired the passage of the Pure Food and Drug Act of 
1906, a foundational law that aimed to prevent the manufacturing and 
distribution of contaminated or mislabelled food and drugs (Drew & 
Clydesdale, 2015).

Public health protection took a significant step forward with the 
establishment of food safety legislation. These food safety regulations 
prohibited the purchase of spoiled food, required accurate labelling of 
products, and enforced sanitary standards during federal inspections of 
slaughterhouses. The Meat Inspection Act established its sanitary pro
cessing requirements to prevent the contamination of meat by micro
organisms, such as Salmonella and Mycobacterium tuberculosis. However, 
the term “microbe” did not appear in the actual legislation. Different 
regions, including the European Union, the Middle East, Africa, China, 
Southeast Asia, and Latin America, integrate food safety regulations 
with the World Trade Organisation. The ageing diseases that spread 
through milk produced a breakthrough in sanitary practice, which was 
another significant advance. Raw milk transmission of tuberculosis 
combined with “milk sickness” resulted in thousands of deaths, targeting 
primarily children during the 1800s (Bryan, 1983). Cities became more 
responsive toward public health solutions in the first decade of the 
1900s. The city of Chicago established the first mandatory raw milk 
pasteurisation rule in 1908 because typhoid and multiple other 
milk-borne diseases ravaged the population (Bryan, 1983). Milk and 
dairy products underwent pasteurisation processing first for spoilage 
prevention in the early 1900s, before the practice successfully expanded 
to other food products, thus decreasing the incidence of diseases such as 
brucellosis, scarlet fever, and tuberculosis disease incidence (Havelaar 
et al., 2010; Helvig, 1959). During the mid-20th century, pasteurised 
milk became responsible for safeguarding and saving countless lives. 
The development of milk pasteurisation led to its adoption as a standard 
food safety practice before governments established pasteurisation as a 
legal requirement, as microorganisms shaped foundational regulations. 
Cost-effective regulation techniques for foodborne pathogens emerged 
as a key component of food safety laws. The Industrial Revolution 
introduced massive food production methods that created new obstacles 
to food safety. Standardised food microorganism testing procedures 
emerged because of rising complications within food supply systems.

The early focus of food safety initiatives centred on detecting visible 
cases of food adulteration and spoilage problems. The 20th century 
began with a transformative change because bacteriology developed, 
allowing scientists to understand microbial contamination better 
alongside its effects on public health. Bacteria received recognition as 
agents of foodborne illness, marking one of the first significant 

developments in microbiological food safety. The term “food poisoning” 
emerged during this time to depict how microbes transform food into 
unsafe products (HARDY, 1999). Research investigators actively sup
ported the creation of food bacteriological standards for microorganisms 
because the public’s understanding of microbial food dangers was 
increasing, and scientists required official methods for quality control 
through random sample collections. Louis Pasteur’s study of fermenta
tion and pasteurisation techniques established the first scientific un
derstanding of the microbial processes involved in food preservation. 
The pasteurisation process serves as an important example demon
strating how microbiological research has driven changes in food safety 
laws. The transition from traditional practices to a more scientific 
approach via the food heating process known as pasteurisation, which 
bears Louis Pasteur’s name, involves specific temperature and time 
combinations to eliminate dangerous microorganisms while preserving 
taste and essential nutritional elements (Hasell & Salter, 2003; Todd, 
2004). In food adulteration, AI is becoming a powerful tool, revolutio
nising food safety through its ability to identify small variations and 
anomalies that may indicate contamination or substitution.

The practice of naming pathogens throughout history dates back to 
1855 when Theobald Smith first isolated Salmonella, which earned its 
name in honour of David Elmer Salmon (Dolman, 1982; Schultz, 2008). 
The second half of the 20th century introduced modern risk evaluation 
and management practices for Listeria and Salmonella spp., focusing on 
pathogen management. These strategies used qualitative and quantita
tive data, incorporating global and local research to develop risk models 
(Hasell & Salter, 2003; Stringer, 2005). Microbiological criteria for 
ready-to-eat foods determine their acceptable foodborne pathogen 
limits, an example of scientific research used to implement health pro
tection standards (Gorris, 2005). The ISO laboratory methods for Sal
monella isolation were essential in supporting standardised food safety 
practices worldwide (Ramsingh, 2014). Through this standardisation 
process, foodborne risk management improved globally by establishing 
consistent, effective food safety measures worldwide. These industrial 
age discoveries provide a tremendous advantage nowadays to the 
implementation of AI in infectious disease control, allowing us to more 
rapidly develop diagnostic tools and drugs (Cesaro et al., 2025).

We understand now the importance of AI in food safety risk man
agement, and we will discuss this in more detail during the review; 
however, history has taught us that food safety regulation has adopted 
proactive risk-based approaches and global standards over the latter 
part of the 20th and 21st centuries. Advances in microbiology and 
epidemiology have led regulators to shift their focus from outbreak 
response to creating systematic controls that prevent future outbreaks. 
These efforts paved the way for the emergence of the Hazard Analysis 
and Critical Control Points (HACCP), a pivotal concept that was intro
duced during this era. During the 1960s, the HACCP system originated 
within the NASA US space program to guarantee astronaut food safety 
through its development. Since then, the system has evolved and now 
serves many domains in food industry operations (Murano et al., 2018).

AI implementation is also based on the current understanding of food 
safety investigation of all factors that connect pathogens in foods to 
environmental factors and human influences. In the absence of data
bases and properly structured information, many nations have utilised 
modernisation in their food legislation during the last several decades to 
enhance their preventive control measures. In 1938, the United States 
established the Food Safety Modernisation Act (FSMA) in 2011 as its 
most extensive reform of food regulations. The law emerged as a direct 
response to lethal E. coli outbreaks in spinach and fatal Salmonella in
cidents in peanut butter during the 2000s, alongside increasing global 
food imports (Strauss, 2011). The United States started to approach the 
One Health approach for implementing the FSMA as an example of a 
comprehensive food safety strategy (Garcia et al., 2020). During its 2011 
introduction, the FSMA delivered major changes to U.S. food safety laws 
by establishing both preventive controls and science-based safety plan
ning requirements. Policies must overcome hurdles in achieving their 
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full potential; hence, scientists may continue to research the intricate 
dynamics (Garcia et al., 2020). After the 2008 melamine adulteration 
mistake, China fully redesigned its food safety legislation and, together 
with the UK and EU, continuously developed their regulations to address 
new outbreaks by taking specific actions such as enhancing poultry egg 
regulation after Salmonella outbreaks and strengthening produce safety 
after E. coli incidents (Evershed & Temple, 2016). Food safety regulatory 
systems in China suffered major public health consequences after 
melamine-contaminated dairy products in 2008, thus affecting about 
300,000 infants (Hellberg et al., 2020). At the international level, the 
World Trade Organisation (WTO) and Codex Alimentarius standards 
have guided developed and developing countries in raising their food 
safety legislation to meet international standards.

Overall, food safety standards have evolved significantly due to 
scientific microbiological advancements. Throughout history, scientists 
have continued to provide both regulatory frameworks with updated 
bacteriological findings and present-day preventive procedures through 
modern risk assessments. The introduction of ancient meat spoilage 
restrictions has evolved into contemporary pathogen laboratory testing 
and genomic-based tracking protocols, demonstrating a rising scientific 
focus on preventative measures. Throughout history, major regulatory 
advancements have emerged because disease outbreaks and scandals 
(driven by disease) exposed weaknesses in contemporary regulatory 
systems. Today’s regulatory frameworks ensure a high level of safety 
protection, to the extent that pathologies such as trichinosis, milk-borne 
typhoid, and botulism-causing canned goods are nearly non-existent 
(Tauxe, 2001).

These developments have not only enhanced the safety of food 
products but also underscored the importance of a science-based 
approach in protecting public health. The ongoing interplay between 
microbiology and food safety legislation continues to drive progress in 
this critical field, ensuring that food systems remain safe and resilient in 
the face of emerging challenges. The long arc of food microbiological 
safety regulation shows through the long-term process that enforced 
standards and proactive policies successfully save lives, validating the 
statement “the law was written in reaction to illness, so that fewer must 
fall ill in the future”. As a result, there is huge potential for AI to help us 
transition from historical concepts and approaches related to food safety 
implementation to more efficient and AI-based technologies.

4. Neural networks and SWOT analysis

Building upon the extensive historical progression of microbiological 
food safety from ancient civilisations through the medieval period and 
the transformative influences of the industrial age, the modern techno
logical innovations, particularly the integration of Artificial Intelligence 
(AI), now promise revolutionary enhancements in ensuring food safety 
and security worldwide (Zatsu et al., 2024). Its key areas of impact will 
include optimisation of production methods, improving supply chain 
management, advancing quality assurance, and strengthening consumer 
safety. These can be achieved by utilising AI-powered systems, which 
automate tasks, enhance efficiency, and ensure consistent product 
quality. Regarding food safety, AI algorithms will be able to detect 
contaminants and analyse food composition (e.g. potential hazards), 
leading to safer food products. Moreover, AI can help optimise the 
supply chain by predicting demand, managing inventory, and ultimately 
leading to more efficient and cost-effective distribution. In recent years, 
AI has emerged as a transformative tool in the context of food safety. AI 
and big data technologies—often referred to as the “fourth industrial 
revolution”—are already making a significant impact in the food in
dustry by improving production efficiency, quality, and reducing waste 
(Ding et al., 2023; Liu et al., 2023). However, the “fourth industrial 
revolution” extends beyond food safety and technologies (e.g., 
biotechnology), assessing their impact on society, economies, and the 
way we live, while also providing a historical perspective. Beyond 
production, AI-driven approaches are being integrated across the entire 

farm-to-fork continuum to enhance food safety and security (De Cock 
et al., 2025a). Indeed, modern food safety systems are turning to 
data-intensive, AI-powered methods to protect consumers from food
borne illness and companies from costly recalls and reputational damage 
(Liu et al., 2023).

The enhanced early detection and additional predictive capabilities 
will allow AI-driven analytical techniques to significantly improve 
detection accuracy, speed, and reliability in identifying pathogens, 
toxins, chemical contaminants and food adulteration (Taiwo et al., 
2024; Yu et al., 2025; Zatsu et al., 2024). However, these studies have 
shown that applying predictive models in food microbiology can have 
limitations, especially when considering complex microbial in
teractions. Their efficiency has been significantly improved following 
the integration of new technologies, including whole-genome 
sequencing (WGS), metagenomics, artificial intelligence, machine 
learning, robotics, the Internet of Things, and time-temperature in
dicators. Their integration into the general framework will enable the 
involvement of these technologies through knowledge and computa
tional approaches, allowing for proactive rather than reactive in
terventions to enhance overall food safety (Dakhia et al., 2025). For 
example, CNNs (Fig. 3) can predict the freshness of fruits and vegetables 
with high accuracy (over 99 %) by analysing data gathered from colour 
uniformity, image resizing, augmentation, and labelling through an 
extremely fast computational system of 8 ms until the final classification 
result (Amin et al., 2023).

To support the detailed review of AI applications in food safety and 
security, a strategic SWOT analysis (Fig. 4) has been carried out to 
systematically study the strengths, weaknesses, opportunities and 
threats connected to AI integration, allowing for a planned assessment of 
its feasibility and lasting effects.

Digging further into the highlights presented in Fig. 4 becomes clear 
that the machine learning algorithms can provide standardised evalua
tions (Bhat et al., 2025) and that automation of inspection and sorting 
processes using AI reduces human labour dependency (Femimol & Jo
seph, 2025). These analytical capabilities, including also the convolu
tional neural networks (CNNs significantly improved detection 
accuracy, speed, and reliability in identifying pathogens, toxins, chem
ical contaminants and food adulteration (Taiwo et al., 2024; Yu et al., 
2025; Zatsu et al., 2024). These advanced analytical methodologies will 

Fig. 3. Modern era framework of convolutional neural networks (CNN) for 
food safety and quality analysis. Created with Biorender.com.
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enable proactive rather than reactive interventions, thereby overall food 
safety (Dakhia et al., 2025). We chose to describe in more detailed 
analysis of each strength, weaknesses, opportunities and threats cate
gories below:

4.1. Strengths

1. Growing Scientific, Multidisciplinary and Institutional Interest- 
There has been an exponential rise in publications and collaborations 
on AI in food safety, especially from China, the US, and Europe, 
indicating solid momentum in research and policy engagement 
(Liberty et al., 2025).

2. Efficiency in Multi-Variable Analysis -AI algorithms, particularly 
deep learning and ensemble models, can process high-dimensional 
data with complex interdependencies, improving predictive power 
(Dhal & Kar, 2025).

3. Advanced Imaging and Spectral Analysis = AI leverages hyper
spectral imaging, infrared spectroscopy, and Raman data to enhance 
food quality and safety monitoring in a non-destructive, high- 
throughput manner (Naseem & Rizwan, 2025).

4. Real-Time Monitoring and IoT Integration: The integration of IoT- 
enabled sensors into smart packaging offers real-time monitoring 
capabilities for early detection of microbial contamination, spoilage 
biomarkers, and environmental variations (temperature, humidity). 
This enables rapid decision-making, food inspection, and corrective 
actions during food storage and transportation, substantially 
reducing response times and enhancing consumer safety, allowing 
for swift, preventive action (Sobhan et al., 2025).

5. Enhanced Traceability via Blockchain Technology: Blockchain 
ensures secure, decentralised, and immutable data sharing, 
strengthening outbreak response and data storage, critical for 
combating food fraud and ensuring transparency throughout com
plex global supply chains (De Cock et al., 2025b). This technology, 
complemented by AI algorithms, provides robust, verifiable trace
ability, improving consumer trust and regulatory compliance (Issa 
et al., 2024; Liu et al., 2025). To better illustrate how it works, we 
provide an example outside the food safety domain, specifically the 
textile industry. It involves a network architecture in which partners 

agree to a smart contract and transaction validation rules at the 
operational level (e.g. organic cotton supply chain). Through this 
network, based on trust between the partners, a distributed ledger 
will store and authenticate the supply chain transactions, providing a 
unique opportunity to all partners to trace back their supply network 
and create a transparent and sustainable supply chain (Agrawal 
et al., 2021). Blockchain technology allows information, not only to 
be stored, but also to be transmitted securely and transparently.

6. Promotion of Sustainable Agriculture: AI technologies enhance 
agricultural productivity through precision agriculture practices, 
including optimised irrigation, fertilisation, crop surveillance, dis
ease identification, and yield forecasting (Khan et al., 2025). This 
significantly boosts resource efficiency and food security, particu
larly in developing regions, contributing to both economic growth 
and environmental sustainability (Ahmad et al., 2024; "US Food and 
Drug Administration,” 2021).

7. Smart Packaging and Shelf-Life Optimisation - AI integrates with 
smart packaging specifically for extremely perishable products, such 
as fruits, vegetables, meat, poultry, milk, and dairy products, 
compared to beverages and baked goods. Using such technologies in 
combination with AI will increase awareness among consumers due 
to the increased positive results for the consumer (Thirupathi Vasuki 
et al., 2023).

8. Resource Efficiency and Waste Reduction AI technologies like 
Winnow and smart scales identify food waste patterns and optimise 
sanitation and energy use, contributing to sustainability and food 
system efficiency (Zatsu et al., 2024).

9. Data-Driven Decision Making - Predictive analytics enable proac
tive safety interventions based on trends in contamination and 
spoilage, thereby reducing recalls and improving traceability.

4.2. Weaknesses

• Limited Availability of Clean, Annotated Data and Algorithm 
Opacity (“Black Box” Issue) -The efficiency of AI models depends 
heavily on the quality and quantity of data, and insufficient labelled 
datasets can impair performance, especially in microbiological haz
ard identification (Shraddha Karanth, Benefo, et al., 2023). Complex 

Fig. 4. SWOT analysis highlights and their impact on food safety main management characteristics. Created with Biorender.com.
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AI models often lack explainability, making it difficult for food safety 
authorities to trust or validate AI-based conclusions.

• High Initial Investment and Maintenance Costs: Implementing 
sophisticated AI and IoT infrastructures requires substantial financial 
investments, potentially limiting accessibility, particularly for small 
to medium-sized enterprises (SMEs) and stakeholders in resource- 
constrained regions or in developing countries (Zatsu et al., 2024). 
In some instances, farmers still prefer solutions such as direct contact 
with the market agent, even though the digitalised option is still 
available. Some examples, such as Hello Tractor in Nigeria, which still 
uses live booking agents and phone calls to deliver services to its 
clients, or Lersha in Ethiopia, which requires local agents to help 
users access the digital services, indicate low levels of digital literacy 
among users in such areas (Abate et al., 2023).

• Requirement for Specialized Expertise: Effective utilization of AI 
and related technologies necessitates specialized technical knowl
edge, posing barriers for widespread adoption, especially in devel
oping countries posing a challenge for resource-constrained 
stakeholders with limited access to skilled personnel (Pegoraro & 
Curzel, 2023).

• Data Privacy and Security Concerns: Extensive use of IoT devices 
and blockchain raises significant concerns regarding data privacy 
and cybersecurity risks, potentially hindering consumer acceptance 
and trust.

• Dependency on Sensor Calibration and Data Quality. Many AI 
models rely on sensor outputs that require consistent calibration and 
environmental control to ensure reliability and reproducibility 
(Khan et al., 2025).

• Integration and Standardisation Issues: Interoperability chal
lenges between diverse AI, IoT, blockchain, and legacy systems 
complicate seamless integration, creating potential inefficiencies and 
increased operational complexities.

• Shortage of Multidisciplinary Expertise: Implementation requires 
coordination between food technologists, data scientists, engineers, 
and regulators—a rare skillset combination in most settings (Ikram 
et al., 2024).

• Scalability Issues: Transitioning from pilot to full-scale AI deploy
ment in food facilities can face operational and performance bot
tlenecks due to environmental variability and cost constraints (Zatsu 
et al., 2024).

4.3. Opportunities

• Customised Solutions for Small Producers: Affordable mobile- 
based AI platforms or cloud services can democratize access to 
safety monitoring technologies for small-scale farmers and food 
processors (Khan et al., 2025).

• Next-Generation Surveillance Systems: Integration with national 
surveillance enhances early outbreak detection and pathogen source 
attribution (Yi et al., 2024).

• Fusion with Genomic and Metagenomic Tools: AI can analyse 
next-generation sequencing (NGS) data for pathogen characterisa
tion, antimicrobial resistance tracking, and microbiome shifts rele
vant to food safety (Yi et al., 2024).

• Expansion into Developing Markets: AI-driven agriculture and 
food safety solutions offer vast opportunities for improving food 
security, nutrition, and economic conditions in developing regions 
(Liu et al., 2023; Zatsu et al., 2024). These technologies can bridge 
infrastructural gaps and promote sustainable agricultural practices, 
addressing significant global food security challenges (Onyeaka 
et al., 2024).

• Personalised Nutrition and Food Computing: Integrating AI with 
food computing applications enables personalised dietary recom
mendations, optimising individual nutritional outcomes (Zatsu et al., 
2024). Technologies such as natural language processing (NLP) and 

AI-driven computer vision offer innovative approaches to consumer 
engagement and dietary planning (Dakhia et al., 2025).

• Regulatory Compliance and Consumer Trust: AI technologies 
facilitate automated and efficient compliance management across 
global food safety regulatory frameworks. This not only ensures 
adherence to stringent international standards but also significantly 
boosts consumer confidence through transparent traceability mech
anisms (Issa et al., 2024).

• Personalised Food Risk Warnings-By integrating health and di
etary data, AI can provide allergen alerts, contamination risk fore
casts, and nutrition-sensitive safety advice tailored to individuals 
(Bhat et al., 2025).

• Predictive Modelling for Zoonotic and Emerging Hazards. With 
climate change and globalisation, AI offers tools to anticipate novel 
pathogen outbreaks and monitor cross-species transmission vectors 
(Ikram et al., 2024).

• Real-Time Food Fraud Detection: AI can analyse supply chain data 
to detect anomalies indicating potential fraud, contributing to more 
transparent and secure food systems (Shraddha Karanth, Benefo, 
et al., 2023).

• Integration with National and Global Food Safety Databases: 
Harmonising AI with Academic-industry initiatives like Codex, FAO/ 
WHO INFOSAN, EFSA and FDA’s GenomeTrakr opens new avenues 
for cross-border hazard prediction and information exchange (Ikram 
et al., 2024).

• AI in Sensory and Spoilage Prediction: Enhanced consumer 
satisfaction and sensory analysis through AI-powered tools that align 
food quality with expectations (Zatsu et al., 2024).

• Industry 4.0 and Smart Agriculture Integration: Adoption of 
digital twins, robotics, drones, and advanced analytics within In
dustry 4.0 frameworks presents substantial opportunities for opti
mising and revolutionising food production processes, resource 
utilization, supply chain management, and sustainability (Ding et al., 
2023; Liu et al., 2025; Zatsu et al., 2024).

4.4. Threats

• Rapid Technological Obsolescence: Continuous advancements in 
AI and related technologies pose significant threats to rapid obso
lescence, necessitating ongoing investments in technological updates 
and infrastructure, which may strain financial resources and 
compromise operational sustainability.

• Lack of Regulatory Harmonisation and Unclear Legal Frame
works: The rapid evolution of AI outpaces legislative development, 
along with the absence of standardised AI protocols across countries, 
complicates compliance, especially for cross-border food safety reg
ulations (Shraddha Karanth, Benefo, et al., 2023).

• Regulatory and Ethical Dilemmas: The accelerated pace of AI and 
IoT integration may outstrip regulatory frameworks, creating legal 
uncertainties and ethical dilemmas, particularly concerning data 
privacy, consumer rights, and AI transparency (Zatsu et al., 2024).

• AI Misuse or Misinterpretation by Non-Experts = Without suffi
cient training, operators may misuse models or misread output, 
resulting in inappropriate decisions or public misinformation (Ikram 
et al., 2024).

• Risk of False Negatives and False Positives: Without proper vali
dation, AI decisions can fail to detect contamination or falsely trigger 
recalls, leading to safety lapses or reputational damage (Pandey & 
Mishra, 2024).

• Socio-economic Inequities: Unequal access to advanced AI tech
nologies could exacerbate existing socio-economic disparities, with 
advanced economies benefiting disproportionately compared to 
resource-limited countries, thereby widening the global digital 
divide (Capraro et al., 2024).

• Public Scepticism and Ethical Concerns-Resistance to AI-based 
food safety systems may arise due to perceived job loss, lack of 
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transparency, or fear of surveillance technologies (Shraddha Kar
anth, Benefo, et al., 2023).

• Risk of Data Bias and Mismanagement: The reliance on vast and 
diverse datasets raises concerns about data quality, bias, and po
tential manipulations, which could negatively impact AI-driven de
cisions and outcomes in food safety and security.

5. AI in pathogen detection and microbial risk assessment

Identification and critical analysis of microbial risk assessments from 
a historical perspective is not possible as they were first introduced only 
in the last 40 years as a valuable tool in the treatment of water in 
microbiological risk management in the 1990s (Rose et al., 1991) More 
specifically, related to food, the first known quantitative microbial risk 
assessment (QMRA) was the USDA Food Safety and Inspection Service’s 
(FSIS) 1998 assessment of Salmonella Enteritidis in shell eggs and egg 
products (Schroeder et al., 2006). The primary objective of QMRA is to 
assess the risk to human health from exposure to pathogens. Using AI in 
QMRA is indeed seen as a natural transition given the significant amount 
of data involved, including from identified hazards, assessing exposure, 
and characterising the overall risk.

AI’s versatility is evident through the breadth of its applications in 
food safety. It has been effectively applied to outbreak detection, 
spoilage and allergen monitoring, food fraud detection, supply chain 
monitoring, traceability systems, quality control, shelf-life prediction, 
and risk assessment (Dimitrakopoulou & Garre, 2025; Yu et al., 2025). 
These diverse applications typically integrate three key elements of AI 
systems, including sensing (data collection), reasoning (analytics and 
modelling), and actuating (decision support or automated action) to 
form more intelligent surveillance and control cycles. AI has already 
shown potential: machine learning (ML) helps recognise hidden signs of 
pollution that standard approaches might miss, and computer vision can 
quickly and consistently check food products better than humans. At the 
same time, experts note that AI’s success depends on having strong and 
accurate data, as well as continued human involvement. For instance, a 
recent review emphasises that while AI can indeed transform food safety 
management, its insights must be built on “timely access to robust, 
comprehensive, and unbiased data” and accompanied by a 
human-in-the-loop approach for critical decisions (Dimitrakopoulou & 
Garre, 2025). Considering all these factors, the following sections 
examine how AI is being applied globally in various areas of food safety 
and security, ranging from detecting microbiological hazards to 
ensuring supply chain integrity, and highlight recent developments, 
current challenges, and future trends. Every section relies on recent 
scientific and policy reports to give a thorough and reliable overview 
that can be read by researchers, industry members and policymakers.

Traditional pathogen detection methods (e.g. culture plating, im
munoassays, PCR) are reliable but often time-consuming, labour-inten
sive, and require specialized lab infrastructure (Onyeaka et al., 2024). AI 
offers a way to accelerate and enhance these processes. For example, ML 
algorithms can analyse complex biological data—from sensor outputs to 
genomic sequences—much faster than manual methods, enabling near 
real-time pathogen identification. For example, ML models paired with 
novel biosensors have demonstrated the ability to significantly reduce 
detection times for foodborne pathogens while maintaining high accu
racy (Onyeaka et al., 2024; Sobhan et al., 2025). By leveraging tech
niques such as AI-enhanced spectroscopy and deep learning image 
analysis, the identification of bacteria like E. coli, Listeria, Pseudomonas, 
or Salmonella can be achieved in hours instead of days 
(Garcia-Vozmediano et al., 2024; Onyeaka et al., 2024; Taiwo et al., 
2024). One study combining Raman spectroscopy with the k-nearest 
neighbours (kNN) ML algorithm, achieved over 98 % accuracy in dis
tinguishing pathogen serotypes, underscoring the power of AI for rapid 
microbial diagnostics (Ciloglu et al., 2020), reducing contamination and 
allowing earlier interventions to prevent illness.

AI is also transforming microbial risk assessment through the use of 

predictive analytics. For example, advanced models can sift through 
historical outbreak data, microbiological test results, and even envi
ronmental factors to predict the likelihood of contamination events 
before they occur (Yu et al., 2025). In practice, this means AI can help 
prioritise which hazards or products merit the most attention (Shraddha 
Karanth, Benefo, et al., 2023). Recent research has demonstrated the 
efficiency of ML in not only detecting pathogens but also in disease 
prediction and contamination source identification by analysing pat
terns from past incidents (Onyeaka et al., 2024). For instance, ML al
gorithms have been trained on patterns of contamination (from climate 
data, supply chain records, etc.) to predict conditions under which 
pathogens like Salmonella or Listeria are likely to proliferate 
(Garcia-Vozmediano et al., 2024; Shraddha Karanth, Benefo, et al., 
2023), which together can act as an “early warning” for heightened risk, 
allowing food producers and regulators to implement controls proac
tively. The benefits of these AI-driven approaches include stronger 
epidemic prevention, improved consumer safety, and enhanced opera
tional efficiency in managing foodborne threats (Ciloglu et al., 2020).

6. AI in food traceability and supply chain monitoring

Similarly to the introduction of QMRA, food traceability monitoring 
programs were also initiated less than 40 years ago; however, actual 
implementation was only introduced in the early 2000s, particularly 
after regulations such as EU Regulation (EC) 178/2002 and the FDA’s 
Bioterrorism Act of 2002. These regulations fuelled the development 
and adoption of more comprehensive traceability systems. Current AI 
techniques can be applied to track and monitor food products from farm 
to table, providing end-to-end visibility into the supply chain. By auto
matically aggregating data from various points (production, processing, 
transport, storage, retail), AI systems help create a live “digital twin” of 
the food supply chain. Because the risks are more visible, organisations 
can address them more quickly. If an unsafe ingredient or contaminant is 
found at one location, AI-based traceability systems can quickly identify 
other products or sites that may be affected, allowing for the rapid recall 
of those items. Sensors and IoT (Internet of Things) devices play a key 
role in this ecosystem. Temperature and humidity sensors monitor cold 
chain conditions, and RFID (Radio-Frequency Identification) tags and 
barcodes track the movement of goods. All these data streams feed into 
AI analytics dashboards (Cheng, 2024). An AI-powered supply chain 
platform might automatically flag if a refrigerated truck’s temperature 
rose above a safety threshold or if a batch of raw material fails to arrive 
at its destination on time, prompting immediate corrective actions.

One significant development is the use of blockchain and AI together 
to ensure data accuracy and maintain traceability. Blockchain securely 
stores all transactions, and when used in conjunction with AI, it provides 
both transparent records and valuable insights. Industry leaders have 
piloted such systems; for instance, Walmart’s Food Traceability Initia
tive utilises a blockchain-based platform to document every step of 
selected products through its supply chain. After collecting the data, AI 
algorithms analyse it to identify if a supplier has a history of quality 
issues or if a route is associated with damaged goods. The use of these 
technologies enables regulators and companies to trace products 
securely and transparently on a much larger scale, which helps them 
verify the authenticity and safety of products moving worldwide. When 
different data streams are combined, AI helps monitor the supply chain 
for risks and tracks the movement of its products. Machine learning 
models can learn the normal operating parameters of a supply chain and 
alert managers to out-of-bound conditions that may indicate a food 
safety risk (for example, detecting signs of deliberate adulteration or 
fraud in the supply chain data). In practice, companies are deploying AI- 
driven track-and-trace solutions that consolidate data from proprietary 
systems and third-party logistics, providing a consolidated view that 
enables executives to make data-driven decisions (Cheng, 2024). In 
practice, AI-based monitoring has been shown to identify problems 
earlier. For example, in one case, adding AI analytics to RFID tracking 
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enabled a distributor to identify a storage unit issue that could have 
resulted in food spoilage, thereby avoiding a potential safety incident 
(Dhal & Kar, 2025; Sonwani et al., 2022).

7. AI in predictive modelling for contamination events and 
outbreaks

Modelling has been used for more than a century to investigate the 
evolution and assess the impact of public health interventions in con
trolling emerging infectious diseases (Siettos & Russo, 2013), One 
approach is to develop AI-based Early Warning Systems (EWS) that 
continuously analyse diverse data sources to flag potential food safety 
threats. They gather both structured data, such as laboratory findings, 
climate records, and trade statistics, as well as unstructured data, 
including media articles and consumer feedback. With ML, EWS can find 
patterns in the data that occurred before contamination events or out
breaks happened. If there are more reports of a particular problem in 
health inspections or if imports of a specific product are rejected more 
often, that often indicates a broader issue. An AI early warning platform 
might leverage IoT sensor feeds (for real-time conditions in farms or 
factories), predictive analytics models (trained to forecast likely 
contamination incidents based on past patterns), and even blockchain 
traceability data (to trace the origin and flag any anomalies). Together, 
these components create a multilayered safety net, including IoT sensors 
that generate real-time data, ML models that predict issues based on that 
data, and traceability tools that localise the problem’s source for rapid 
action.

A vivid illustration of predictive modelling comes from innovative 
projects analysing non-traditional data, such as online consumer reviews 
and social media, to detect outbreaks. In 2025, the UK Health Security 
Agency (UKHSA) reported on experiments using AI to scan online 
restaurant reviews for signs of foodborne illness(Laurence et al., 2025). 
By using natural language processing (NLP) models (including large 
language models), this system can “trawl” through thousands of reviews 
to spot mentions of symptoms like vomiting or diarrhoea alongside 
references to certain foods or establishments (Laurence et al., 2025). 
Early tests revealed that AI could identify groups of reviews that pin
pointed the exact cause of illness, informing officials about outbreaks 
they might not have otherwise noticed. UKHSA scientists envision that 
“gathering information in this way could one day become routine, providing 
more information on rates of GI illness not captured by current systems, as 
well as vital clues around possible sources and causes in outbreaks” 
(Laurence et al., 2025). This novel surveillance approach could signifi
cantly enhance outbreak detection by capturing mild or moderate cases 
(where individuals do not seek medical attention) and by accelerating 
hypothesis generation about the source of the outbreak.

8. AI in the detection of food fraud and adulteration

As indicated in Fig. 1, food fraud and adulteration have been a sig
nificant concern throughout ancient times, often resulting in severe 
punishments for those involved once detected by the authorities. Food 
fraud and adulteration, involving the addition or removal of ingredients 
or the use of misleading labels for profit, pose significant risks to both 
the health of individuals and their trust in food. Traditional methods for 
detecting food fraud often involve using chemical tests or complex an
alyses, which can be both costly and time-consuming. AI-based ap
proaches (i.e., deep learning, support vector machines (SVMs), or k- 
nearest neighbours (k-NN) trained on image datasets, spectroscopy 
coupled with AI, and others) are now providing powerful new tools for 
authenticity control, capable of detecting subtle signs of adulteration that 
might elude standard tests (Deng et al., 2024; Goyal et al., 2025; Magdas 
et al., 2025). With the help of ML and deep learning, scientists are 
developing fast, reliable, and inexpensive methods to keep foods such as 
olive oil, honey, meat, and spices safe.

Although significant achievements have been made, the field 

recognises that further efforts are needed to utilise AI for enhanced fraud 
detection. A recent review concluded that while several relevant 
experimental datasets demonstrated AI’s promise, additional research is 
required for “affirmative” conclusions on specific methods 
(Vinothkanna et al., 2024). Building open reference databases of 
authentic vs. fraudulent samples could greatly aid ML model training (a 
call echoed by many researchers). Furthermore, the explainability of AI 
decisions remains crucial: food companies and regulators are more likely 
to trust AI findings if the model can indicate which specific features (e.g., 
a particular spectral peak or image texture) led it to label a sample as 
adulterated. Efforts in explainable AI (XAI) for food fraud are underway, 
using techniques like (Shapley Additive Explanations) and LIME (Local 
Interpretable Model-Agnostic Explanations) to highlight the indicators 
of fraud in a sample (Buyuktepe et al., 2025). In summary, AI has rapidly 
become a “valuable tool for quality and authenticity assessment” (Magdas 
et al., 2025). It strengthens the effort to prevent food fraud by enabling 
continuous and high-speed testing of food, thereby safeguarding both 
customers and honest producers. As they improve and are used more 
frequently, they will be essential for maintaining global food security in 
terms of ensuring genuine and trustworthy food.

9. AI-powered decision support for regulatory enforcement and 
inspections

A key example in this field is the U.S. FDA’s Artificial Intelligence 
Import Screening pilot, which was designed specifically for seafood. 
More than 90 % of U.S. seafood is imported, and past incidents have 
revealed significant safety concerns in some imports. In 2022, the FDA 
launched Phase 3 of a pilot program using ML to strengthen import 
screening at the ports. The AI model was trained on years of import data 
(covering millions of shipments) to identify patterns—combinations of 
product type, origin, supplier history, laboratory results, etc.—that 
correlate with shipments posing a higher risk of violations (such as 
contamination with pathogens, illegal additives, or decomposition) ("US 
Food and Drug Administration,” 2021; "US Food and Drug Administra
tion,” 2022). The ML system can flag incoming shipments that are more 
likely to be unsafe, effectively triaging imports so that inspectors and 
labs concentrate on the riskiest ones (Alharbi, 2024; Omar, 2022). That 
approach strengthens the FDA’s current PREDICT system for risk-based 
import checks by incorporating AI that can find patterns. Early findings 
have been promising: the AI can recognise subtle “connections and 
patterns that … the FDA’s traditional screening system cannot see,” 
thereby predicting which lots might be non-compliant ("US Food and 
Drug Administration,” 2021). For example, it might learn that a 
particular combination of supplier and product has a hidden issue (such 
as shrimp from a region where antibiotic misuse is common) and ensure 
those shipments receive extra scrutiny. The ultimate goal is to “better 
protect consumers from unsafe foods by advancing the FDA’s ability to 
identify potential hazards” before they enter the country ("US Food and 
Drug Administration,” 2022). Insights from this pilot are expected to 
inform the broader application of AI across other commodities and help 
shape future risk-based surveillance strategies.

Likewise, AI is being used in domestic inspection programs to decide 
which food facilities should be checked first. The UK Food Standards 
Agency (FSA) recently tested an AI proof-of-concept tool to support food 
hygiene inspections by local authorities. The system, called the Food 
Hygiene Rating Scheme – AI (FHRS AI), was designed to predict which 
restaurants and food businesses are at a higher risk of non-compliance 
with hygiene regulations ("Food Standard Agency,” 2023). In the past, 
inspectors would schedule their visits according to regular schedules or 
based on compliance history; however, this approach often overlooked 
new risks and wasted time on places that were always compliant. The 
FSA’s Strategic Surveillance team, instead, developed an ML model (in 
partnership with data scientists) that analyses a range of data – e.g., 
business history, ownership, previous inspection outcomes, and even 
local socio-economic factors – to prioritise establishments for inspection 
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(Magdas et al., 2025). This risk-based ranking helps identify “which 
businesses to inspect first” by predicting those most likely to have poor 
hygiene at present (Janga et al., 2023). By adopting this approach, the 
FSA aimed to help local councils utilise their limited inspection re
sources more efficiently, focusing on problematic establishments while 
potentially extending inspection intervals for low-risk ones (Janga et al., 
2023). Notably, the FSA integrated an ethical governance layer, devel
oping a Responsible AI framework with principles of fairness, trans
parency, and accountability, among others, to guide the AI’s 
development and ensure it could be explained and justified to stake
holders (Janga et al., 2023). Although the tool was designed to test ideas 
and not implemented immediately, it demonstrated how regulators 
could responsibly apply AI to their work.

Beyond prioritisation, AI is improving the efficacy of inspections and 
monitoring themselves. Computer vision and ML are being deployed for 
the automated inspection of food and facilities. For example, AI-driven 
image analysis can assist meat inspectors by automatically detecting 
defects or contamination on carcasses during processing in plants (Bayer 
et al., 2022). High-resolution cameras, combined with trained algo
rithms, can detect issues such as faecal contamination or quality defects 
in meat at chain speed, serving as a decision support tool for human 
inspectors. Such systems, in pilot testing, show promise in reducing 
human error and ensuring more standardised inspection outcomes. 
Similarly, predictive analytics platforms ingest historical inspection 
data, violation trends, and even external factors to forecast where 
problems are likely to occur next (Magdas et al., 2025). As a result, it can 
help create a strategy. For example, a city’s inspection team might use AI 
to predict more violations at seafood restaurants in the summer and 
deploy more inspectors on duty.

10. Implications and suggestions for stakeholders

Following up on the historical assigned impacts in Fig. 4, we now 
describe in Fig. 5 how AI can be utilised by stakeholders in managing 
food safety and its implications for human health. Using AI in food safety 
and security can have a significant impact on various stakeholders, 
enabling them to achieve optimal outcomes and effectively manage 
risks. We outline below the main points and suggestions for each group: 

• Policymakers and Regulators: Governments and international bodies 
should update their regulatory frameworks to accommodate and 
guide the use of AI in food safety (Ijaiya & Odumuwagun, 2024). 
Ensuring that data protection laws (such as GDPR, in the European 
Economic Area) and food safety regulations work in concert is crucial 

– stakeholders must feel confident that sharing data for AI purposes 
won’t compromise their privacy or trade secrets. Policymakers 
should also consider classifying food safety AI systems under 
emerging laws (for example, the EU’s AI Act) as potentially high-risk 
AI, which would require strict oversight, transparency, and valida
tion (Kinney et al., 2024; Paul, 2024). Creating standards and 
guidelines for AI in food safety is strongly advised. It could include 
protocols for validating AI tools (similar to validating laboratory 
methods), requirements for explainability (so that torsions under
stand the algorithm’s decision), and benchmarks for performance. 
Regulatory agencies must also invest in building their internal ca
pacity – hiring or training data scientists who can evaluate 
industry-deployed AI systems and perhaps certify them.

• Food Industry and Food Scientists: Food businesses, from farming 
and manufacturing to retail, along with food safety scientists, stand 
to gain immensely from AI—if they prepare adequately (Zatsu et al., 
2024). Initially, it is essential to prioritise data management and 
literacy. As one expert put it, “we cannot stress enough about having 
good data” (Food and Agriculture Organisation of the United Na
tions, 2024). Companies should ensure their food safety data (testing 
results, sensor logs, etc.) are well-organised, digital, and of high 
quality, because these are the fuel for AI algorithms. Training pro
grams to enhance AI and data literacy among food safety pro
fessionals will empower them to make informed decisions on when 
and how to utilise AI (S. Karanth, Benefo, et al., 2023). Second, in
dustry should adopt a proactive stance by participating in trials and 
pilots of AI technologies (such as blockchain traceability, predictive 
analytics platforms, and AI inspection systems) and sharing out
comes. We recommend that research institutions and universities 
encourage joint programs (e.g., food safety and AI) and include 
coursework on ML applications in food systems (Shraddha Karanth, 
Benefo, et al., 2023). The scientific community can help by sharing 
results of AI method tests, offering open data and improving AI so 
that industry users feel confident in its results. Importantly, both 
industry and scientists must remain conscious of ethical consider
ations: bias in AI models (if the training data isn’t representative) 
could lead to, say, unfair targeting of certain suppliers or regions as 
“high risk.” It is essential to employ ongoing monitoring and tech
niques to mitigate bias when utilising AI in monitoring. To sum up, 
those involved in food production must utilise AI wisely – acquire the 
necessary skills, leverage data, and collaborate with regulators to 
ensure these tools are making our food safer.

• Academic and Research Community: Academia plays a dual role as 
both innovator and educator in the AI revolution. Researchers should 

Fig. 5. AI interaction with stakeholders and their determined present impacts and the linked historical connections. Created with Biorender.com.
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continue to push the frontiers of what AI can do in food safety – 
whether it’s developing more accurate predictive models, novel 
sensors that pair with AI, or algorithms that can integrate multidis
ciplinary data (from genomics to economics) for holistic risk 
assessment (Yu et al., 2025). As technology advances rapidly, aca
demics should also focus on rigorously testing AI approaches. 
Peer-reviewed studies should critically assess not just successes but 
also limitations, helping to separate hype from reality. One particular 
need is to develop publicly available benchmark datasets and 
simulation environments for food safety AI (Min et al., 2023). These 
would allow different algorithms to be compared objectively and 
foster improvements (much as ImageNet accelerated computer 
vision, a curated “FoodNet” could accelerate AI for food safety). The 
academic community should work closely with agencies like EFSA 
(European Food Safety Authority), FDA, and others to align research 
with regulatory needs – for example, focusing on the explainability 
and reliability of AI models, as these are top concerns for regulators 
(Dimitrakopoulou & Garre, 2025; Food and Agriculture Organisation 
of the United Nations, 2024). Interdisciplinary research – bringing 
together food science, computer science, and social science – will be 
crucial to address not only technical issues but also risk communi
cation and public acceptance of AI-driven food safety measures 
(Almoselhy & Usmani, 2024).

Education is equally important, and universities should update their 
curricula to prepare the next generation of food safety experts who are 
fluent in AI (Tagkopoulos et al., 2024). This might mean new courses at 
the intersection of food safety and data analytics, case studies on AI 
applications, and even practical training on relevant software or coding 
for students of food science and public health. Academic journals and 
conferences can help transfer knowledge by setting up special issues and 
forums on “AI in Food Safety,” making it easier to share best practices. 
Academia can also act as a neutral source to give input on policies. For 
example, university researchers might be commissioned to audit the 
performance of an AI system used by a government, lending credibility 
and transparency. Finally, the academic community, alongside in
stitutions like FAO/WHO, should help ensure that the benefits of AI in 
food safety are global (Organization, 2022). This could involve 
capacity-building initiatives – training programs or toolkits – for 
developing countries so they can also implement AI solutions appro
priate to their context (perhaps focusing on mobile-based or low-cost AI 
tools for local food safety challenges) (Issa et al., 2024).

11. Conclusions and future impact

Artificial intelligence is poised to revolutionise food safety and se
curity globally. As AI is integrated with other leading technologies, we 
are approaching a time when food safety issues can be better handled, 
and many problems can be identified and prevented before they occur. 
We analyse some possible future impacts and new ideas, drawing on 
information from recent research and strategic planning exercises con
ducted by international groups. A key anticipated impact is the shift 
towards a “zero contamination” paradigm in food safety, whereby 
advanced predictive and control systems drastically reduce the inci
dence of hazards in the food supply (Janga et al., 2023). AI will be 
central to this by enabling real-time, continuous monitoring across the 
food chain. We can envision intelligent processing lines where AI vision 
systems and sensors instantly detect contaminants (microbial, chemical, 
or physical) and trigger automatic corrective actions (e.g., removing a 
contaminated product from the line or adjusting a process parameter). 
Some pilot food factories are already implementing such closed-loop AI 
systems. As these technologies become more affordable and advanced, 
their widespread use may lead to significant safety improvements, just 
as industrial automation has in enhancing manufacturing quality. Pre
dictive maintenance of food safety is another concept: just as AI is used 
to predict machine failures in industry, it can also predict food safety 

failures (for instance, forecasting when a slaughterhouse’s processes 
might lead to contamination events if cleaning is not performed sooner).

The global integration of data is likely to create a “nervous system” 
for food safety spanning the planet. We anticipate an expansion of data- 
sharing platforms and consortia where stakeholders contribute surveil
lance data (testing results, illness reports, environmental data) into 
shared AI-powered networks. This would enable every nation to receive 
early warnings. Suppose an AI in a particular country detects a new form 
of food adulteration. In that case, it can alert authorities and companies 
worldwide to be aware of the same issue in imported products. The 
FoodSafety4EU project in Europe highlights this trajectory, emphasising 
“a culture of data sharing among stakeholders” as essential to AI’s trans
formative potential (Bayer et al., 2022; Lattanzio et al., 2025). By 
breaking down data silos, AI can analyse a composite picture of food 
safety that no single agency or company could assemble alone. In 
practical terms, this might mean a future where a dashboard at the WHO 
or FAO, powered by AI, continuously assesses global risks: integrating 
climate data to warn of aflatoxin surges in certain crops, trade data to 
flag unusual import patterns that could indicate fraud, and health data 
to catch outbreak signals early across borders.
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