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ARTICLE INFO ABSTRACT

Handling Editor: Dr. S Charlebois Background: The integration of artificial intelligence (AI) represents a revolutionary advancement in the global
food safety paradigm, particularly in the transition from historically reactive measures to predictive and pre-
ventive methodologies. In the past, laws concerning food safety were created mainly to address emergencies and
prevent both adulteration and obvious contamination. However, recent Al developments have made it possible to
handle pathogen detection, assess risks and monitor the supply chain more quickly, accurately and efficiently.
Scope and approach: This critical review analyses significant historical milestones, from ancient practices through
medieval regulations to transformative discoveries of the industrial era, and ultimately towards contemporary
technological integration.

Key findings and conclusions: Al can indeed be a valuable tool in enhancing the efficiency of food safety regu-
lations, and it is a natural progression in the historical transition toward increased acceptance of Al by public
sector institutions. Convolutional neural networks, hyperspectral imaging, and blockchain-based traceability
demonstrate how AI has enhanced food safety management by detecting and preventing issues early on. This
review highlights the significant challenges that remain, including data availability, the opacity of algorithms
(the “black box™ problem), substantial implementation costs, and specialized skill requirements. We outline the
progression from reactive, historically driven food safety regulations to proactive Al-powered predictive and
preventive strategies, examining the associated strengths, limitations, opportunities, and threats. Lastly, the
review provides policymakers, those in the food sector, and academics with the knowledge and guidance they
need to adopt and effectively apply Al technologies to enhance food safety.
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1. Introduction guide the safe, responsible, and effective use of Al in government or-

ganisations. Secondly, a new government Digital Service was estab-

To understand how artificial intelligence (AI) can help us deliver
food deemed safe for human consumption, we first need to recognise
that Al is not only a tool that needs to be enforced, but is also a natural,
historical transition based on established concepts. For example, the
United Kingdom government has taken significant steps to promote the
adoption of artificial intelligence (AI) in the public sector through some
key initiatives. First, the Department for Science, Innovation and
Technology (DSIT) has published an “Artificial Intelligence Playbook” to

lished in January 2025 to unite efforts in grasping the opportunities of
technology and Al under DSIT. These two institutions, the Cabinet Office
and DSIT, will ultimately work together to develop a clear strategy and
strong leadership for AI adoption in the public sector. The imple-
mentation of Al, especially in food safety management, can enhance our
understanding of how public health can be better protected and how this
can be more effectively translated into policy when considering a his-
torical perspective.
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Hence, historical documents highlight that food is an essential item,
provided by governments to keep people alive and ensure their survival
at any cost, as declared by the British Government during the famine in
Ireland in 1846 (Mokyr, 2025). This documented historical evidence
indicates that food safety was, until the second half of the 19th century,
primarily viewed as a food supply issue without any consideration of its
implications on human health. However, without a genuine intention to
provide food that is also safe for consumption, the government also is-
sued instructions to Soup Kitchens to follow precise recipes, which
include the thermal treatment of vegetables for soup preparations
(Miller, 2012). The earliest documented food regulations date back to
the Babylonian period (1700 B.C.) and were written in the Code of
Hammurabi, with later references in Mesopotamian texts (Gallagher &
McKevitt, 2019, pp. 239-271; Lasztity et al., 2004). The Book of Levit-
icus, written around 1400 B.C., through the Old Testament, made it
forbidden to eat animals that died naturally while establishing proper
slaughter techniques for hygiene purposes to limit carcass contamina-
tion (C. Griffith, 2006; Lasztity et al., 2004). Fermentation was used by
ancient Egyptians, as well as the Mosaic law, to produce bread and beer,
as these processes provided essential nutrition while protecting against
contaminated water consumption (Gallagher & McKevitt, 2019, pp.
239-271). The laws enacted provisions to prevent the ingestion of un-
safe meat (Lasztity et al., 2004). Records show that food contamination
has frequently endangered lives — Alexander the Great might have suc-
cumbed to typhoid fever from Salmonella-infected food or water in 323
B.C., according to scholarly analysis (Lasztity et al., 2004). During their
military campaigns and sea expeditions, Greeks and Romans sustained
their food supplies through salting and smoking techniques to protect
meat and fish. Observational experience led to the creation of preser-
vation techniques, which later provided the foundation for microbio-
logical discoveries.

Convolutional neural networks, currently used to understand the
role of Al in food safety, can also serve as a model to describe food safety
measures implemented over the past centuries worldwide. Across the
ancient world (Fig. 1), food quality laws aimed to curb adulteration and
spoilage. In ancient India, over 2000 years ago, regulations prohibited
tampering with grains and fats (Lasztity et al., 2004). Chinese writings
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and Hindu texts also allude to concerns about food purity (Lasztity et al.,
2004). The use of spices, such as pepper, cloves, and cinnamon, became
widespread not only for their flavour but also for their preservative
properties (Van der Veen & Morales, 2015).

These spices were believed to have antimicrobial properties, which
helped prolong the shelf life of food and prevent spoilage. The origins of
food safety can be traced back to ancient times, with early practices such
as inspecting meat in Roman markets to remove rancid products. The
Roman Empire developed an impressively organised state food control
system; records indicate that the Romans enforced standards to protect
consumers from fraudulent or substandard produce (Fortin, 2023; Or-
ganization, 2018). Under Roman law, rules governing the sale of food
became as detailed as some modern legislation (Lasztity et al., 2004).
For instance, the Roman writer Pliny the Elder, in the 1st century A.D.,
documented merchants using poisonous additives to improve wine’s
taste, warning that “many poisons are used to adapt wine to our tastes”
and cautioning that such tampered wine is not healthy (Maestro et al.,
2022). Notably, most ancient food laws were intended to prevent deceit,
such as diluting wine or selling spoiled goods, but this had the side effect
of protecting public health. The integration of all the measures pre-
sented in Fig. 1 can currently be achieved by AI and described through
the principle of convolutional neural networks (CNNs). This review aims
to provide a historical perspective and facilitate an understanding of the
need for Al implementation in food safety. Moreover, we strive to
outline the benefits of using Al in managing and delivering food safety,
as well as to understand the challenges posed by the sector and its
stakeholders. Through various consultations, we understood that the
best way to explore the value of Al integration is to introduce Al as a
natural transition with a historic perspective (Fig. 2).

2. Food safety approach during the medieval period and its
likely impact on present-day Al implementation

A successful Al application in food safety regulatory institutions is
based on our ability to collect sufficient and high-quality data for
network implementation. These types of data have and will always
include information from microbiological controls, transportation,
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Fig. 1. Food safety convolutional neural networks based on a historical approach. Created with Biorender.com.
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Fig. 2. The proposed aim of the review is to examine the historical transition to Al in food safety (B.C. — Before Christ; Al — Artificial Intelligence). Created with Bior

ender.com.

ingredient quality, chemical safety, and other relevant factors. Food
safety regulations were first developed in the medieval period by Eu-
ropean local authorities, who initiated basic controls to prevent food
vendors from selling spoiled or adulterated products (Gallagher &
McKevitt, 2019, pp. 239-271). During this period, various food regu-
lations, along with market inspection systems, were also introduced to
ensure food safety in public food markets.

The European guilds took responsibility for food safety by devel-
oping specific rules that butchers, fishmongers, and bakers needed to
follow to ensure the safety of their products. The early forms of food
regulations evolved into the modern food safety regulations that exist
today (Knezevic et al., 2021). City authorities, along with monarchs,
created standardised versions of previously unwritten rules, one of the
first ways of creating and transmitting information. The Assize of Bread,
enacted by King John in 1202, established that bakers could not add
peas or beans to their dough while setting mandatory weight standards
for wheat-based bread (Mahajan & Gupta, 2010). The first English food
regulation established under King John during the Middle Ages aimed to
standardise bread measures and protect customers from exposure to
poor-quality ingredients that threatened their safety. The first food law
was introduced during the reign of Henry III in 1266, primarily con-
cerning the weight and price of bread and beer. Much later, between
1730 and 1776, the Tea Acts were introduced, which prohibited the
adulteration of tea. These acts also banned the use of sloe, liquorice, or
previously used tea in new products. The records demonstrate that Eu-
ropean laws from the medieval period enforced standards for beer and
wine quality and banned spoiled meat or fish, along with market
cleanliness rules (Organization, 2018). Medieval towns punished people
who sold “corrupt” or days-old meat through fines or banished them to
the town square, as the population recognised that spoiled meat would
threaten their health, despite a lack of microbiological understanding.
The 1516 German beer purity law, known as Reinheitsgebot, allowed
only barley, hops, and water in brewing beer to protect beer quality from
dangerous additives — an early food safety law acknowledged for pre-
venting toxic herbs and spoiled grains in beer production (Dornbusch,
1998; Yates, 2023).

Apart from Europe, food regulations during this period incorporated
both religious mandates and cultural restrictions. During the medieval
caliphates, Islamic law and the Hisba (market inspector) system
enforced fair food trading practices by inspecting markets to prevent
merchants from adulterating food products by Qur’anic anti-fraud rules.
Religious dietary laws of Judaism and Islam implemented both hygienic
procedures during slaughter. They banned certain foods that decreased
foodborne threats, such as pork, to prevent trichinosis and the spoilage
of rotten meat(C. Griffith, 2006). Various modes of regulation were
implemented across Middle Age territories to control food safety stan-
dards. By modern standards, these laws remained preliminary, primarily

targeting obvious threats from rot, filth, and fraud. This shift represents
the beginning of a process that eventually led to the formalisation of
food safety regulations during the industrial era (C. Griffith, 2006).
Indeed, the actual implementation of all this data during medieval times
was by no means based on coordinated storage and usage of data;
however, it likely improved consumer safety and reduced mortality
rates. Highlights, however, that presently AI can harvest the abundance
of food safety sectoral data and provide immense benefits to public food
safety and health.

3. Industrial age impact on the transition to the present day Al

Nowadays, the implementation of Al can be successfully applied in
food safety domains mainly because the data available is not only based
on observational conclusions, as in medieval times, but is further
enriched through technological and regulatory developments. So, what
are the industrial age revolutionary discoveries and policy regulations
that make today’s AI implementation possible? The microbiological
aspect of food safety became a palpable issue since the invention of the
microscope by Antonie van Leeuwenhoek (1632-1723), which facili-
tated the visualization and confirmation of bacteria in rainwater. During
the 19th century, as industrialisation and urbanisation swept through
society, it immediately necessitated new food safety legislation. The
combination of manufacturing at scale and cross-country food distri-
bution created numerous pathways through which contamination and
fraudulent practices could occur, ultimately leading to severe conse-
quences, including deadly outcomes.

As a consequence, many governments, both in Europe and world-
wide, established multiple food laws in the late 1800s to combat public
health emergencies (Ldsztity et al., 2004). The development of food
hygiene regulatory frameworks primarily emerged due to an increase in
human fatalities related to foodborne pathogens. For example, the
widespread infection of Trichinellosis (trichina worm infection) through
undercooked pork meat impacted 19th-century Germany to such an
extent that the country documented more than 12,500 cases, which
claimed 5 % of the patients recorded between 1861 and 1890 (Hinz,
1991). As a consequence, it was not until the 19th century, with the
development of commercial heat processing by Nicolas Appert and Louis
Pasteur, that food microbiology made significant progress(C. J. Griffith,
2006).

Adulteration scandals also prompted reform. Unlike today, when Al
can access information widely available through various databases,
profiteers in the industrial sector routinely employed deleterious
methods during food modification, presenting safety risks to consumers.
The Sale of Food and Drugs Act of 1875 strengthened previous food
safety regulations from 1860, following public anger after twenty people
died during the 1858 Bradford poisonings caused by arsenic-tainted
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candy in England (London, 2014). Public food inspectors working
within these chemical contamination regulation frameworks played an
additional role in reducing microbial food spoilage, as they penalised
food products that appeared unwholesome under defined purity stan-
dards. Journalism, referred to as muckraking journalism, revealed
deplorable work conditions in American food manufacturing industries
during this period.

Al can currently process disease, food microbiological, or chemical
composition data due to the revolutionary discoveries made during the
Industrial Revolution, which made this linkage possible. The Theory of
disease, proposed by Louis Pasteur and Robert Koch, established the
scientific principle linking microbial agents to the development of
sickness through their co-discovery. Later, William Mansfield Clark and
Harold Lubs significantly contributed to the developed microbiology
and food safety by creating the methyl red and Voges-Proskauer tests in
1915 (McDevitt, 2009). These tests brought advanced weapon systems
to Enterobacteriaceae family bacterial identity investigations. The Clark
and Lubs buffers are a set of solutions created by these scientists to
stabilise pH levels in multiple biochemical and microbiological experi-
ments across a broad pH spectrum(Bower & Bates, 1955). Food safety
regulations in the United States experienced their initial federal enact-
ment during the late 19th century, as citizens demanded protection from
contaminated and adulterated food products. Upton Sinclair’s novel
“The Jungle” inspired the passage of the Pure Food and Drug Act of
1906, a foundational law that aimed to prevent the manufacturing and
distribution of contaminated or mislabelled food and drugs (Drew &
Clydesdale, 2015).

Public health protection took a significant step forward with the
establishment of food safety legislation. These food safety regulations
prohibited the purchase of spoiled food, required accurate labelling of
products, and enforced sanitary standards during federal inspections of
slaughterhouses. The Meat Inspection Act established its sanitary pro-
cessing requirements to prevent the contamination of meat by micro-
organisms, such as Salmonella and Mycobacterium tuberculosis. However,
the term “microbe” did not appear in the actual legislation. Different
regions, including the European Union, the Middle East, Africa, China,
Southeast Asia, and Latin America, integrate food safety regulations
with the World Trade Organisation. The ageing diseases that spread
through milk produced a breakthrough in sanitary practice, which was
another significant advance. Raw milk transmission of tuberculosis
combined with “milk sickness” resulted in thousands of deaths, targeting
primarily children during the 1800s (Bryan, 1983). Cities became more
responsive toward public health solutions in the first decade of the
1900s. The city of Chicago established the first mandatory raw milk
pasteurisation rule in 1908 because typhoid and multiple other
milk-borne diseases ravaged the population (Bryan, 1983). Milk and
dairy products underwent pasteurisation processing first for spoilage
prevention in the early 1900s, before the practice successfully expanded
to other food products, thus decreasing the incidence of diseases such as
brucellosis, scarlet fever, and tuberculosis disease incidence (Havelaar
et al., 2010; Helvig, 1959). During the mid-20th century, pasteurised
milk became responsible for safeguarding and saving countless lives.
The development of milk pasteurisation led to its adoption as a standard
food safety practice before governments established pasteurisation as a
legal requirement, as microorganisms shaped foundational regulations.
Cost-effective regulation techniques for foodborne pathogens emerged
as a key component of food safety laws. The Industrial Revolution
introduced massive food production methods that created new obstacles
to food safety. Standardised food microorganism testing procedures
emerged because of rising complications within food supply systems.

The early focus of food safety initiatives centred on detecting visible
cases of food adulteration and spoilage problems. The 20th century
began with a transformative change because bacteriology developed,
allowing scientists to understand microbial contamination better
alongside its effects on public health. Bacteria received recognition as
agents of foodborne illness, marking one of the first significant
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developments in microbiological food safety. The term “food poisoning”
emerged during this time to depict how microbes transform food into
unsafe products (HARDY, 1999). Research investigators actively sup-
ported the creation of food bacteriological standards for microorganisms
because the public’s understanding of microbial food dangers was
increasing, and scientists required official methods for quality control
through random sample collections. Louis Pasteur’s study of fermenta-
tion and pasteurisation techniques established the first scientific un-
derstanding of the microbial processes involved in food preservation.
The pasteurisation process serves as an important example demon-
strating how microbiological research has driven changes in food safety
laws. The transition from traditional practices to a more scientific
approach via the food heating process known as pasteurisation, which
bears Louis Pasteur’s name, involves specific temperature and time
combinations to eliminate dangerous microorganisms while preserving
taste and essential nutritional elements (Hasell & Salter, 2003; Todd,
2004). In food adulteration, Al is becoming a powerful tool, revolutio-
nising food safety through its ability to identify small variations and
anomalies that may indicate contamination or substitution.

The practice of naming pathogens throughout history dates back to
1855 when Theobald Smith first isolated Salmonella, which earned its
name in honour of David Elmer Salmon (Dolman, 1982; Schultz, 2008).
The second half of the 20th century introduced modern risk evaluation
and management practices for Listeria and Salmonella spp., focusing on
pathogen management. These strategies used qualitative and quantita-
tive data, incorporating global and local research to develop risk models
(Hasell & Salter, 2003; Stringer, 2005). Microbiological criteria for
ready-to-eat foods determine their acceptable foodborne pathogen
limits, an example of scientific research used to implement health pro-
tection standards (Gorris, 2005). The ISO laboratory methods for Sal-
monella isolation were essential in supporting standardised food safety
practices worldwide (Ramsingh, 2014). Through this standardisation
process, foodborne risk management improved globally by establishing
consistent, effective food safety measures worldwide. These industrial
age discoveries provide a tremendous advantage nowadays to the
implementation of Al in infectious disease control, allowing us to more
rapidly develop diagnostic tools and drugs (Cesaro et al., 2025).

We understand now the importance of Al in food safety risk man-
agement, and we will discuss this in more detail during the review;
however, history has taught us that food safety regulation has adopted
proactive risk-based approaches and global standards over the latter
part of the 20th and 21st centuries. Advances in microbiology and
epidemiology have led regulators to shift their focus from outbreak
response to creating systematic controls that prevent future outbreaks.
These efforts paved the way for the emergence of the Hazard Analysis
and Critical Control Points (HACCP), a pivotal concept that was intro-
duced during this era. During the 1960s, the HACCP system originated
within the NASA US space program to guarantee astronaut food safety
through its development. Since then, the system has evolved and now
serves many domains in food industry operations (Murano et al., 2018).

Al implementation is also based on the current understanding of food
safety investigation of all factors that connect pathogens in foods to
environmental factors and human influences. In the absence of data-
bases and properly structured information, many nations have utilised
modernisation in their food legislation during the last several decades to
enhance their preventive control measures. In 1938, the United States
established the Food Safety Modernisation Act (FSMA) in 2011 as its
most extensive reform of food regulations. The law emerged as a direct
response to lethal E. coli outbreaks in spinach and fatal Salmonella in-
cidents in peanut butter during the 2000s, alongside increasing global
food imports (Strauss, 2011). The United States started to approach the
One Health approach for implementing the FSMA as an example of a
comprehensive food safety strategy (Garcia et al., 2020). During its 2011
introduction, the FSMA delivered major changes to U.S. food safety laws
by establishing both preventive controls and science-based safety plan-
ning requirements. Policies must overcome hurdles in achieving their
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full potential; hence, scientists may continue to research the intricate
dynamics (Garcia et al., 2020). After the 2008 melamine adulteration
mistake, China fully redesigned its food safety legislation and, together
with the UK and EU, continuously developed their regulations to address
new outbreaks by taking specific actions such as enhancing poultry egg
regulation after Salmonella outbreaks and strengthening produce safety
after E. coli incidents (Evershed & Temple, 2016). Food safety regulatory
systems in China suffered major public health consequences after
melamine-contaminated dairy products in 2008, thus affecting about
300,000 infants (Hellberg et al., 2020). At the international level, the
World Trade Organisation (WTO) and Codex Alimentarius standards
have guided developed and developing countries in raising their food
safety legislation to meet international standards.

Overall, food safety standards have evolved significantly due to
scientific microbiological advancements. Throughout history, scientists
have continued to provide both regulatory frameworks with updated
bacteriological findings and present-day preventive procedures through
modern risk assessments. The introduction of ancient meat spoilage
restrictions has evolved into contemporary pathogen laboratory testing
and genomic-based tracking protocols, demonstrating a rising scientific
focus on preventative measures. Throughout history, major regulatory
advancements have emerged because disease outbreaks and scandals
(driven by disease) exposed weaknesses in contemporary regulatory
systems. Today’s regulatory frameworks ensure a high level of safety
protection, to the extent that pathologies such as trichinosis, milk-borne
typhoid, and botulism-causing canned goods are nearly non-existent
(Tauxe, 2001).

These developments have not only enhanced the safety of food
products but also underscored the importance of a science-based
approach in protecting public health. The ongoing interplay between
microbiology and food safety legislation continues to drive progress in
this critical field, ensuring that food systems remain safe and resilient in
the face of emerging challenges. The long arc of food microbiological
safety regulation shows through the long-term process that enforced
standards and proactive policies successfully save lives, validating the
statement “the law was written in reaction to illness, so that fewer must
fall ill in the future”. As a result, there is huge potential for Al to help us
transition from historical concepts and approaches related to food safety
implementation to more efficient and Al-based technologies.

4. Neural networks and SWOT analysis

Building upon the extensive historical progression of microbiological
food safety from ancient civilisations through the medieval period and
the transformative influences of the industrial age, the modern techno-
logical innovations, particularly the integration of Artificial Intelligence
(AI), now promise revolutionary enhancements in ensuring food safety
and security worldwide (Zatsu et al., 2024). Its key areas of impact will
include optimisation of production methods, improving supply chain
management, advancing quality assurance, and strengthening consumer
safety. These can be achieved by utilising Al-powered systems, which
automate tasks, enhance efficiency, and ensure consistent product
quality. Regarding food safety, Al algorithms will be able to detect
contaminants and analyse food composition (e.g. potential hazards),
leading to safer food products. Moreover, Al can help optimise the
supply chain by predicting demand, managing inventory, and ultimately
leading to more efficient and cost-effective distribution. In recent years,
Al has emerged as a transformative tool in the context of food safety. Al
and big data technologies—often referred to as the “fourth industrial
revolution”—are already making a significant impact in the food in-
dustry by improving production efficiency, quality, and reducing waste
(Ding et al., 2023; Liu et al., 2023). However, the “fourth industrial
revolution” extends beyond food safety and technologies (e.g.,
biotechnology), assessing their impact on society, economies, and the
way we live, while also providing a historical perspective. Beyond
production, Al-driven approaches are being integrated across the entire
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farm-to-fork continuum to enhance food safety and security (De Cock
et al.,, 2025a). Indeed, modern food safety systems are turning to
data-intensive, Al-powered methods to protect consumers from food-
borne illness and companies from costly recalls and reputational damage
(Liu et al., 2023).

The enhanced early detection and additional predictive capabilities
will allow Al-driven analytical techniques to significantly improve
detection accuracy, speed, and reliability in identifying pathogens,
toxins, chemical contaminants and food adulteration (Taiwo et al.,
2024; Yu et al., 2025; Zatsu et al., 2024). However, these studies have
shown that applying predictive models in food microbiology can have
limitations, especially when considering complex microbial in-
teractions. Their efficiency has been significantly improved following
the integration of new technologies, including whole-genome
sequencing (WGS), metagenomics, artificial intelligence, machine
learning, robotics, the Internet of Things, and time-temperature in-
dicators. Their integration into the general framework will enable the
involvement of these technologies through knowledge and computa-
tional approaches, allowing for proactive rather than reactive in-
terventions to enhance overall food safety (Dakhia et al., 2025). For
example, CNNs (Fig. 3) can predict the freshness of fruits and vegetables
with high accuracy (over 99 %) by analysing data gathered from colour
uniformity, image resizing, augmentation, and labelling through an
extremely fast computational system of 8 ms until the final classification
result (Amin et al., 2023).

To support the detailed review of Al applications in food safety and
security, a strategic SWOT analysis (Fig. 4) has been carried out to
systematically study the strengths, weaknesses, opportunities and
threats connected to Al integration, allowing for a planned assessment of
its feasibility and lasting effects.

Digging further into the highlights presented in Fig. 4 becomes clear
that the machine learning algorithms can provide standardised evalua-
tions (Bhat et al., 2025) and that automation of inspection and sorting
processes using Al reduces human labour dependency (Femimol & Jo-
seph, 2025). These analytical capabilities, including also the convolu-
tional neural networks (CNNs significantly improved detection
accuracy, speed, and reliability in identifying pathogens, toxins, chem-
ical contaminants and food adulteration (Taiwo et al., 2024; Yu et al.,
2025; Zatsu et al., 2024). These advanced analytical methodologies will
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Fig. 3. Modern era framework of convolutional neural networks (CNN) for
food safety and quality analysis. Created with Biorender.com.
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SWOT analysis highlights of Al impact on food safety
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Fig. 4. SWOT analysis highlights and their impact on food safety main management characteristics. Created with Biorender.com.

enable proactive rather than reactive interventions, thereby overall food
safety (Dakhia et al., 2025). We chose to describe in more detailed
analysis of each strength, weaknesses, opportunities and threats cate-
gories below:

4.1. Strengths

1. Growing Scientific, Multidisciplinary and Institutional Interest-
There has been an exponential rise in publications and collaborations
on Al in food safety, especially from China, the US, and Europe,
indicating solid momentum in research and policy engagement
(Liberty et al., 2025).

2. Efficiency in Multi-Variable Analysis -Al algorithms, particularly
deep learning and ensemble models, can process high-dimensional
data with complex interdependencies, improving predictive power
(Dhal & Kar, 2025).

3. Advanced Imaging and Spectral Analysis = Al leverages hyper-
spectral imaging, infrared spectroscopy, and Raman data to enhance
food quality and safety monitoring in a non-destructive, high-
throughput manner (Naseem & Rizwan, 2025).

4. Real-Time Monitoring and IoT Integration: The integration of IoT-
enabled sensors into smart packaging offers real-time monitoring
capabilities for early detection of microbial contamination, spoilage
biomarkers, and environmental variations (temperature, humidity).
This enables rapid decision-making, food inspection, and corrective
actions during food storage and transportation, substantially
reducing response times and enhancing consumer safety, allowing
for swift, preventive action (Sobhan et al., 2025).

5. Enhanced Traceability via Blockchain Technology: Blockchain
ensures secure, decentralised, and immutable data sharing,
strengthening outbreak response and data storage, critical for
combating food fraud and ensuring transparency throughout com-
plex global supply chains (De Cock et al., 2025b). This technology,
complemented by Al algorithms, provides robust, verifiable trace-
ability, improving consumer trust and regulatory compliance (Issa
et al., 2024; Liu et al., 2025). To better illustrate how it works, we
provide an example outside the food safety domain, specifically the
textile industry. It involves a network architecture in which partners

agree to a smart contract and transaction validation rules at the
operational level (e.g. organic cotton supply chain). Through this
network, based on trust between the partners, a distributed ledger
will store and authenticate the supply chain transactions, providing a
unique opportunity to all partners to trace back their supply network
and create a transparent and sustainable supply chain (Agrawal
et al., 2021). Blockchain technology allows information, not only to
be stored, but also to be transmitted securely and transparently.

. Promotion of Sustainable Agriculture: Al technologies enhance

agricultural productivity through precision agriculture practices,
including optimised irrigation, fertilisation, crop surveillance, dis-
ease identification, and yield forecasting (Khan et al., 2025). This
significantly boosts resource efficiency and food security, particu-
larly in developing regions, contributing to both economic growth
and environmental sustainability (Ahmad et al., 2024; "US Food and
Drug Administration,” 2021).

. Smart Packaging and Shelf-Life Optimisation - Al integrates with

smart packaging specifically for extremely perishable products, such
as fruits, vegetables, meat, poultry, milk, and dairy products,
compared to beverages and baked goods. Using such technologies in
combination with AI will increase awareness among consumers due
to the increased positive results for the consumer (Thirupathi Vasuki
et al., 2023).

. Resource Efficiency and Waste Reduction AI technologies like

Winnow and smart scales identify food waste patterns and optimise
sanitation and energy use, contributing to sustainability and food
system efficiency (Zatsu et al., 2024).

. Data-Driven Decision Making - Predictive analytics enable proac-

tive safety interventions based on trends in contamination and
spoilage, thereby reducing recalls and improving traceability.

4.2. Weaknesses

o Limited Availability of Clean, Annotated Data and Algorithm

Opacity (“Black Box” Issue) -The efficiency of Al models depends
heavily on the quality and quantity of data, and insufficient labelled
datasets can impair performance, especially in microbiological haz-
ard identification (Shraddha Karanth, Benefo, et al., 2023). Complex
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Al'models often lack explainability, making it difficult for food safety
authorities to trust or validate Al-based conclusions.

High Initial Investment and Maintenance Costs: Implementing
sophisticated Al and IoT infrastructures requires substantial financial
investments, potentially limiting accessibility, particularly for small
to medium-sized enterprises (SMEs) and stakeholders in resource-
constrained regions or in developing countries (Zatsu et al., 2024).
In some instances, farmers still prefer solutions such as direct contact
with the market agent, even though the digitalised option is still
available. Some examples, such as Hello Tractor in Nigeria, which still
uses live booking agents and phone calls to deliver services to its
clients, or Lersha in Ethiopia, which requires local agents to help
users access the digital services, indicate low levels of digital literacy
among users in such areas (Abate et al., 2023).

Requirement for Specialized Expertise: Effective utilization of Al
and related technologies necessitates specialized technical knowl-
edge, posing barriers for widespread adoption, especially in devel-
oping countries posing a challenge for resource-constrained
stakeholders with limited access to skilled personnel (Pegoraro &
Curzel, 2023).

Data Privacy and Security Concerns: Extensive use of IoT devices
and blockchain raises significant concerns regarding data privacy
and cybersecurity risks, potentially hindering consumer acceptance
and trust.

Dependency on Sensor Calibration and Data Quality. Many Al
models rely on sensor outputs that require consistent calibration and
environmental control to ensure reliability and reproducibility
(Khan et al., 2025).

Integration and Standardisation Issues: Interoperability chal-
lenges between diverse Al, IoT, blockchain, and legacy systems
complicate seamless integration, creating potential inefficiencies and
increased operational complexities.

Shortage of Multidisciplinary Expertise: Implementation requires
coordination between food technologists, data scientists, engineers,
and regulators—a rare skillset combination in most settings (Ikram
et al., 2024).

Scalability Issues: Transitioning from pilot to full-scale Al deploy-
ment in food facilities can face operational and performance bot-
tlenecks due to environmental variability and cost constraints (Zatsu
et al., 2024).

4.3. Opportunities

Customised Solutions for Small Producers: Affordable mobile-
based AI platforms or cloud services can democratize access to
safety monitoring technologies for small-scale farmers and food
processors (Khan et al., 2025).

Next-Generation Surveillance Systems: Integration with national
surveillance enhances early outbreak detection and pathogen source
attribution (Yi et al., 2024).

Fusion with Genomic and Metagenomic Tools: Al can analyse
next-generation sequencing (NGS) data for pathogen characterisa-
tion, antimicrobial resistance tracking, and microbiome shifts rele-
vant to food safety (Yi et al., 2024).

Expansion into Developing Markets: Al-driven agriculture and
food safety solutions offer vast opportunities for improving food
security, nutrition, and economic conditions in developing regions
(Liu et al., 2023; Zatsu et al., 2024). These technologies can bridge
infrastructural gaps and promote sustainable agricultural practices,
addressing significant global food security challenges (Onyeaka
et al., 2024).

Personalised Nutrition and Food Computing: Integrating AI with
food computing applications enables personalised dietary recom-
mendations, optimising individual nutritional outcomes (Zatsu et al.,
2024). Technologies such as natural language processing (NLP) and
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Al-driven computer vision offer innovative approaches to consumer
engagement and dietary planning (Dakhia et al., 2025).
Regulatory Compliance and Consumer Trust: Al technologies
facilitate automated and efficient compliance management across
global food safety regulatory frameworks. This not only ensures
adherence to stringent international standards but also significantly
boosts consumer confidence through transparent traceability mech-
anisms (Issa et al., 2024).

Personalised Food Risk Warnings-By integrating health and di-
etary data, Al can provide allergen alerts, contamination risk fore-
casts, and nutrition-sensitive safety advice tailored to individuals
(Bhat et al., 2025).

Predictive Modelling for Zoonotic and Emerging Hazards. With
climate change and globalisation, Al offers tools to anticipate novel
pathogen outbreaks and monitor cross-species transmission vectors
(Ikram et al., 2024).

Real-Time Food Fraud Detection: Al can analyse supply chain data
to detect anomalies indicating potential fraud, contributing to more
transparent and secure food systems (Shraddha Karanth, Benefo,
et al., 2023).

Integration with National and Global Food Safety Databases:
Harmonising Al with Academic-industry initiatives like Codex, FAO/
WHO INFOSAN, EFSA and FDA’s GenomeTrakr opens new avenues
for cross-border hazard prediction and information exchange (Ikram
et al., 2024).

Al in Sensory and Spoilage Prediction: Enhanced consumer
satisfaction and sensory analysis through Al-powered tools that align
food quality with expectations (Zatsu et al., 2024).

Industry 4.0 and Smart Agriculture Integration: Adoption of
digital twins, robotics, drones, and advanced analytics within In-
dustry 4.0 frameworks presents substantial opportunities for opti-
mising and revolutionising food production processes, resource
utilization, supply chain management, and sustainability (Ding et al.,
2023; Liu et al., 2025; Zatsu et al., 2024).

4.4. Threats

Rapid Technological Obsolescence: Continuous advancements in
Al and related technologies pose significant threats to rapid obso-
lescence, necessitating ongoing investments in technological updates
and infrastructure, which may strain financial resources and
compromise operational sustainability.

Lack of Regulatory Harmonisation and Unclear Legal Frame-
works: The rapid evolution of Al outpaces legislative development,
along with the absence of standardised Al protocols across countries,
complicates compliance, especially for cross-border food safety reg-
ulations (Shraddha Karanth, Benefo, et al., 2023).

Regulatory and Ethical Dilemmas: The accelerated pace of Al and
IoT integration may outstrip regulatory frameworks, creating legal
uncertainties and ethical dilemmas, particularly concerning data
privacy, consumer rights, and Al transparency (Zatsu et al., 2024).
Al Misuse or Misinterpretation by Non-Experts = Without suffi-
cient training, operators may misuse models or misread output,
resulting in inappropriate decisions or public misinformation (Ikram
et al., 2024).

Risk of False Negatives and False Positives: Without proper vali-
dation, Al decisions can fail to detect contamination or falsely trigger
recalls, leading to safety lapses or reputational damage (Pandey &
Mishra, 2024).

Socio-economic Inequities: Unequal access to advanced Al tech-
nologies could exacerbate existing socio-economic disparities, with
advanced economies benefiting disproportionately compared to
resource-limited countries, thereby widening the global digital
divide (Capraro et al., 2024).

Public Scepticism and Ethical Concerns-Resistance to Al-based
food safety systems may arise due to perceived job loss, lack of
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transparency, or fear of surveillance technologies (Shraddha Kar-
anth, Benefo, et al., 2023).

¢ Risk of Data Bias and Mismanagement: The reliance on vast and
diverse datasets raises concerns about data quality, bias, and po-
tential manipulations, which could negatively impact Al-driven de-
cisions and outcomes in food safety and security.

5. Al in pathogen detection and microbial risk assessment

Identification and critical analysis of microbial risk assessments from
a historical perspective is not possible as they were first introduced only
in the last 40 years as a valuable tool in the treatment of water in
microbiological risk management in the 1990s (Rose et al., 1991) More
specifically, related to food, the first known quantitative microbial risk
assessment (QMRA) was the USDA Food Safety and Inspection Service’s
(FSIS) 1998 assessment of Salmonella Enteritidis in shell eggs and egg
products (Schroeder et al., 2006). The primary objective of QMRA is to
assess the risk to human health from exposure to pathogens. Using Al in
QMRA is indeed seen as a natural transition given the significant amount
of data involved, including from identified hazards, assessing exposure,
and characterising the overall risk.

Al’s versatility is evident through the breadth of its applications in
food safety. It has been effectively applied to outbreak detection,
spoilage and allergen monitoring, food fraud detection, supply chain
monitoring, traceability systems, quality control, shelf-life prediction,
and risk assessment (Dimitrakopoulou & Garre, 2025; Yu et al., 2025).
These diverse applications typically integrate three key elements of Al
systems, including sensing (data collection), reasoning (analytics and
modelling), and actuating (decision support or automated action) to
form more intelligent surveillance and control cycles. Al has already
shown potential: machine learning (ML) helps recognise hidden signs of
pollution that standard approaches might miss, and computer vision can
quickly and consistently check food products better than humans. At the
same time, experts note that AI's success depends on having strong and
accurate data, as well as continued human involvement. For instance, a
recent review emphasises that while AI can indeed transform food safety
management, its insights must be built on “timely access to robust,
comprehensive, and unbiased data” and accompanied by a
human-in-the-loop approach for critical decisions (Dimitrakopoulou &
Garre, 2025). Considering all these factors, the following sections
examine how Al is being applied globally in various areas of food safety
and security, ranging from detecting microbiological hazards to
ensuring supply chain integrity, and highlight recent developments,
current challenges, and future trends. Every section relies on recent
scientific and policy reports to give a thorough and reliable overview
that can be read by researchers, industry members and policymakers.

Traditional pathogen detection methods (e.g. culture plating, im-
munoassays, PCR) are reliable but often time-consuming, labour-inten-
sive, and require specialized lab infrastructure (Onyeaka et al., 2024). Al
offers a way to accelerate and enhance these processes. For example, ML
algorithms can analyse complex biological data—from sensor outputs to
genomic sequences—much faster than manual methods, enabling near
real-time pathogen identification. For example, ML models paired with
novel biosensors have demonstrated the ability to significantly reduce
detection times for foodborne pathogens while maintaining high accu-
racy (Onyeaka et al., 2024; Sobhan et al., 2025). By leveraging tech-
niques such as Al-enhanced spectroscopy and deep learning image
analysis, the identification of bacteria like E. coli, Listeria, Pseudomonas,
or Salmonella can be achieved in hours instead of days
(Garcia-Vozmediano et al., 2024; Onyeaka et al., 2024; Taiwo et al.,
2024). One study combining Raman spectroscopy with the k-nearest
neighbours (kNN) ML algorithm, achieved over 98 % accuracy in dis-
tinguishing pathogen serotypes, underscoring the power of Al for rapid
microbial diagnostics (Ciloglu et al., 2020), reducing contamination and
allowing earlier interventions to prevent illness.

Al is also transforming microbial risk assessment through the use of
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predictive analytics. For example, advanced models can sift through
historical outbreak data, microbiological test results, and even envi-
ronmental factors to predict the likelihood of contamination events
before they occur (Yu et al., 2025). In practice, this means Al can help
prioritise which hazards or products merit the most attention (Shraddha
Karanth, Benefo, et al., 2023). Recent research has demonstrated the
efficiency of ML in not only detecting pathogens but also in disease
prediction and contamination source identification by analysing pat-
terns from past incidents (Onyeaka et al., 2024). For instance, ML al-
gorithms have been trained on patterns of contamination (from climate
data, supply chain records, etc.) to predict conditions under which
pathogens like Salmonella or Listeria are likely to proliferate
(Garcia-Vozmediano et al., 2024; Shraddha Karanth, Benefo, et al.,
2023), which together can act as an “early warning” for heightened risk,
allowing food producers and regulators to implement controls proac-
tively. The benefits of these Al-driven approaches include stronger
epidemic prevention, improved consumer safety, and enhanced opera-
tional efficiency in managing foodborne threats (Ciloglu et al., 2020).

6. Al in food traceability and supply chain monitoring

Similarly to the introduction of QMRA, food traceability monitoring
programs were also initiated less than 40 years ago; however, actual
implementation was only introduced in the early 2000s, particularly
after regulations such as EU Regulation (EC) 178/2002 and the FDA’s
Bioterrorism Act of 2002. These regulations fuelled the development
and adoption of more comprehensive traceability systems. Current Al
techniques can be applied to track and monitor food products from farm
to table, providing end-to-end visibility into the supply chain. By auto-
matically aggregating data from various points (production, processing,
transport, storage, retail), Al systems help create a live “digital twin” of
the food supply chain. Because the risks are more visible, organisations
can address them more quickly. If an unsafe ingredient or contaminant is
found at one location, Al-based traceability systems can quickly identify
other products or sites that may be affected, allowing for the rapid recall
of those items. Sensors and IoT (Internet of Things) devices play a key
role in this ecosystem. Temperature and humidity sensors monitor cold
chain conditions, and RFID (Radio-Frequency Identification) tags and
barcodes track the movement of goods. All these data streams feed into
Al analytics dashboards (Cheng, 2024). An Al-powered supply chain
platform might automatically flag if a refrigerated truck’s temperature
rose above a safety threshold or if a batch of raw material fails to arrive
at its destination on time, prompting immediate corrective actions.

One significant development is the use of blockchain and AI together
to ensure data accuracy and maintain traceability. Blockchain securely
stores all transactions, and when used in conjunction with Al, it provides
both transparent records and valuable insights. Industry leaders have
piloted such systems; for instance, Walmart’s Food Traceability Initia-
tive utilises a blockchain-based platform to document every step of
selected products through its supply chain. After collecting the data, Al
algorithms analyse it to identify if a supplier has a history of quality
issues or if a route is associated with damaged goods. The use of these
technologies enables regulators and companies to trace products
securely and transparently on a much larger scale, which helps them
verify the authenticity and safety of products moving worldwide. When
different data streams are combined, Al helps monitor the supply chain
for risks and tracks the movement of its products. Machine learning
models can learn the normal operating parameters of a supply chain and
alert managers to out-of-bound conditions that may indicate a food
safety risk (for example, detecting signs of deliberate adulteration or
fraud in the supply chain data). In practice, companies are deploying Al-
driven track-and-trace solutions that consolidate data from proprietary
systems and third-party logistics, providing a consolidated view that
enables executives to make data-driven decisions (Cheng, 2024). In
practice, Al-based monitoring has been shown to identify problems
earlier. For example, in one case, adding Al analytics to RFID tracking
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enabled a distributor to identify a storage unit issue that could have
resulted in food spoilage, thereby avoiding a potential safety incident
(Dhal & Kar, 2025; Sonwani et al., 2022).

7. Al in predictive modelling for contamination events and
outbreaks

Modelling has been used for more than a century to investigate the
evolution and assess the impact of public health interventions in con-
trolling emerging infectious diseases (Siettos & Russo, 2013), One
approach is to develop Al-based Early Warning Systems (EWS) that
continuously analyse diverse data sources to flag potential food safety
threats. They gather both structured data, such as laboratory findings,
climate records, and trade statistics, as well as unstructured data,
including media articles and consumer feedback. With ML, EWS can find
patterns in the data that occurred before contamination events or out-
breaks happened. If there are more reports of a particular problem in
health inspections or if imports of a specific product are rejected more
often, that often indicates a broader issue. An Al early warning platform
might leverage IoT sensor feeds (for real-time conditions in farms or
factories), predictive analytics models (trained to forecast likely
contamination incidents based on past patterns), and even blockchain
traceability data (to trace the origin and flag any anomalies). Together,
these components create a multilayered safety net, including IoT sensors
that generate real-time data, ML models that predict issues based on that
data, and traceability tools that localise the problem’s source for rapid
action.

A vivid illustration of predictive modelling comes from innovative
projects analysing non-traditional data, such as online consumer reviews
and social media, to detect outbreaks. In 2025, the UK Health Security
Agency (UKHSA) reported on experiments using Al to scan online
restaurant reviews for signs of foodborne illness(Laurence et al., 2025).
By using natural language processing (NLP) models (including large
language models), this system can “trawl” through thousands of reviews
to spot mentions of symptoms like vomiting or diarrhoea alongside
references to certain foods or establishments (Laurence et al., 2025).
Early tests revealed that Al could identify groups of reviews that pin-
pointed the exact cause of illness, informing officials about outbreaks
they might not have otherwise noticed. UKHSA scientists envision that
“gathering information in this way could one day become routine, providing
more information on rates of GI illness not captured by current systems, as
well as vital clues around possible sources and causes in outbreaks”
(Laurence et al., 2025). This novel surveillance approach could signifi-
cantly enhance outbreak detection by capturing mild or moderate cases
(where individuals do not seek medical attention) and by accelerating
hypothesis generation about the source of the outbreak.

8. Al in the detection of food fraud and adulteration

As indicated in Fig. 1, food fraud and adulteration have been a sig-
nificant concern throughout ancient times, often resulting in severe
punishments for those involved once detected by the authorities. Food
fraud and adulteration, involving the addition or removal of ingredients
or the use of misleading labels for profit, pose significant risks to both
the health of individuals and their trust in food. Traditional methods for
detecting food fraud often involve using chemical tests or complex an-
alyses, which can be both costly and time-consuming. Al-based ap-
proaches (i.e., deep learning, support vector machines (SVMs), or k-
nearest neighbours (k-NN) trained on image datasets, spectroscopy
coupled with Al, and others) are now providing powerful new tools for
authenticity control, capable of detecting subtle signs of adulteration that
might elude standard tests (Deng et al., 2024; Goyal et al., 2025; Magdas
et al.,, 2025). With the help of ML and deep learning, scientists are
developing fast, reliable, and inexpensive methods to keep foods such as
olive oil, honey, meat, and spices safe.

Although significant achievements have been made, the field
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recognises that further efforts are needed to utilise AI for enhanced fraud
detection. A recent review concluded that while several relevant
experimental datasets demonstrated Al's promise, additional research is
required for “affirmative” conclusions on specific methods
(Vinothkanna et al., 2024). Building open reference databases of
authentic vs. fraudulent samples could greatly aid ML model training (a
call echoed by many researchers). Furthermore, the explainability of Al
decisions remains crucial: food companies and regulators are more likely
to trust Al findings if the model can indicate which specific features (e.g.,
a particular spectral peak or image texture) led it to label a sample as
adulterated. Efforts in explainable AI (XAI) for food fraud are underway,
using techniques like (Shapley Additive Explanations) and LIME (Local
Interpretable Model-Agnostic Explanations) to highlight the indicators
of fraud in a sample (Buyuktepe et al., 2025). In summary, Al has rapidly
become a “valuable tool for quality and authenticity assessment” (Magdas
et al., 2025). It strengthens the effort to prevent food fraud by enabling
continuous and high-speed testing of food, thereby safeguarding both
customers and honest producers. As they improve and are used more
frequently, they will be essential for maintaining global food security in
terms of ensuring genuine and trustworthy food.

9. Al-powered decision support for regulatory enforcement and
inspections

A key example in this field is the U.S. FDA’s Artificial Intelligence
Import Screening pilot, which was designed specifically for seafood.
More than 90 % of U.S. seafood is imported, and past incidents have
revealed significant safety concerns in some imports. In 2022, the FDA
launched Phase 3 of a pilot program using ML to strengthen import
screening at the ports. The Al model was trained on years of import data
(covering millions of shipments) to identify patterns—combinations of
product type, origin, supplier history, laboratory results, etc.—that
correlate with shipments posing a higher risk of violations (such as
contamination with pathogens, illegal additives, or decomposition) ("US
Food and Drug Administration,” 2021; "US Food and Drug Administra-
tion,” 2022). The ML system can flag incoming shipments that are more
likely to be unsafe, effectively triaging imports so that inspectors and
labs concentrate on the riskiest ones (Alharbi, 2024; Omar, 2022). That
approach strengthens the FDA’s current PREDICT system for risk-based
import checks by incorporating Al that can find patterns. Early findings
have been promising: the Al can recognise subtle “connections and
patterns that ... the FDA’s traditional screening system cannot see,”
thereby predicting which lots might be non-compliant ("US Food and
Drug Administration,” 2021). For example, it might learn that a
particular combination of supplier and product has a hidden issue (such
as shrimp from a region where antibiotic misuse is common) and ensure
those shipments receive extra scrutiny. The ultimate goal is to “better
protect consumers from unsafe foods by advancing the FDA’s ability to
identify potential hazards” before they enter the country ("US Food and
Drug Administration,” 2022). Insights from this pilot are expected to
inform the broader application of Al across other commodities and help
shape future risk-based surveillance strategies.

Likewise, Al is being used in domestic inspection programs to decide
which food facilities should be checked first. The UK Food Standards
Agency (FSA) recently tested an Al proof-of-concept tool to support food
hygiene inspections by local authorities. The system, called the Food
Hygiene Rating Scheme — AI (FHRS AD), was designed to predict which
restaurants and food businesses are at a higher risk of non-compliance
with hygiene regulations ("Food Standard Agency,” 2023). In the past,
inspectors would schedule their visits according to regular schedules or
based on compliance history; however, this approach often overlooked
new risks and wasted time on places that were always compliant. The
FSA’s Strategic Surveillance team, instead, developed an ML model (in
partnership with data scientists) that analyses a range of data - e.g.,
business history, ownership, previous inspection outcomes, and even
local socio-economic factors — to prioritise establishments for inspection
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(Magdas et al., 2025). This risk-based ranking helps identify “which
businesses to inspect first” by predicting those most likely to have poor
hygiene at present (Janga et al., 2023). By adopting this approach, the
FSA aimed to help local councils utilise their limited inspection re-
sources more efficiently, focusing on problematic establishments while
potentially extending inspection intervals for low-risk ones (Janga et al.,
2023). Notably, the FSA integrated an ethical governance layer, devel-
oping a Responsible Al framework with principles of fairness, trans-
parency, and accountability, among others, to guide the AI's
development and ensure it could be explained and justified to stake-
holders (Janga et al., 2023). Although the tool was designed to test ideas
and not implemented immediately, it demonstrated how regulators
could responsibly apply Al to their work.

Beyond prioritisation, Al is improving the efficacy of inspections and
monitoring themselves. Computer vision and ML are being deployed for
the automated inspection of food and facilities. For example, Al-driven
image analysis can assist meat inspectors by automatically detecting
defects or contamination on carcasses during processing in plants (Bayer
et al., 2022). High-resolution cameras, combined with trained algo-
rithms, can detect issues such as faecal contamination or quality defects
in meat at chain speed, serving as a decision support tool for human
inspectors. Such systems, in pilot testing, show promise in reducing
human error and ensuring more standardised inspection outcomes.
Similarly, predictive analytics platforms ingest historical inspection
data, violation trends, and even external factors to forecast where
problems are likely to occur next (Magdas et al., 2025). As a result, it can
help create a strategy. For example, a city’s inspection team might use Al
to predict more violations at seafood restaurants in the summer and
deploy more inspectors on duty.

10. Implications and suggestions for stakeholders

Following up on the historical assigned impacts in Fig. 4, we now
describe in Fig. 5 how Al can be utilised by stakeholders in managing
food safety and its implications for human health. Using Al in food safety
and security can have a significant impact on various stakeholders,
enabling them to achieve optimal outcomes and effectively manage
risks. We outline below the main points and suggestions for each group:

e Policymakers and Regulators: Governments and international bodies
should update their regulatory frameworks to accommodate and
guide the use of Al in food safety (Ijaiya & Odumuwagun, 2024).
Ensuring that data protection laws (such as GDPR, in the European
Economic Area) and food safety regulations work in concert is crucial

Stakeholders
e Palicymakers
-
e Food industry
staff
T— Academia
o
= Regulators
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— stakeholders must feel confident that sharing data for AI purposes
won’t compromise their privacy or trade secrets. Policymakers
should also consider classifying food safety Al systems under
emerging laws (for example, the EU’s Al Act) as potentially high-risk
Al, which would require strict oversight, transparency, and valida-
tion (Kinney et al., 2024; Paul, 2024). Creating standards and
guidelines for Al in food safety is strongly advised. It could include
protocols for validating Al tools (similar to validating laboratory
methods), requirements for explainability (so that torsions under-
stand the algorithm’s decision), and benchmarks for performance.
Regulatory agencies must also invest in building their internal ca-
pacity — hiring or training data scientists who can evaluate
industry-deployed Al systems and perhaps certify them.

e Food Industry and Food Scientists: Food businesses, from farming
and manufacturing to retail, along with food safety scientists, stand
to gain immensely from AI—if they prepare adequately (Zatsu et al.,
2024). Initially, it is essential to prioritise data management and
literacy. As one expert put it, “we cannot stress enough about having
good data” (Food and Agriculture Organisation of the United Na-
tions, 2024). Companies should ensure their food safety data (testing
results, sensor logs, etc.) are well-organised, digital, and of high
quality, because these are the fuel for Al algorithms. Training pro-
grams to enhance Al and data literacy among food safety pro-
fessionals will empower them to make informed decisions on when
and how to utilise AI (S. Karanth, Benefo, et al., 2023). Second, in-
dustry should adopt a proactive stance by participating in trials and
pilots of Al technologies (such as blockchain traceability, predictive
analytics platforms, and Al inspection systems) and sharing out-
comes. We recommend that research institutions and universities
encourage joint programs (e.g., food safety and AI) and include
coursework on ML applications in food systems (Shraddha Karanth,
Benefo, et al., 2023). The scientific community can help by sharing
results of Al method tests, offering open data and improving Al so
that industry users feel confident in its results. Importantly, both
industry and scientists must remain conscious of ethical consider-
ations: bias in Al models (if the training data isn’t representative)
could lead to, say, unfair targeting of certain suppliers or regions as
“high risk.” It is essential to employ ongoing monitoring and tech-
niques to mitigate bias when utilising Al in monitoring. To sum up,
those involved in food production must utilise Al wisely — acquire the
necessary skills, leverage data, and collaborate with regulators to
ensure these tools are making our food safer.

e Academic and Research Community: Academia plays a dual role as
both innovator and educator in the Al revolution. Researchers should
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Fig. 5. Al interaction with stakeholders and their determined present impacts and the linked historical connections. Created with Biorender.com.
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continue to push the frontiers of what Al can do in food safety —
whether it’s developing more accurate predictive models, novel
sensors that pair with Al, or algorithms that can integrate multidis-
ciplinary data (from genomics to economics) for holistic risk
assessment (Yu et al., 2025). As technology advances rapidly, aca-
demics should also focus on rigorously testing Al approaches.
Peer-reviewed studies should critically assess not just successes but
also limitations, helping to separate hype from reality. One particular
need is to develop publicly available benchmark datasets and
simulation environments for food safety Al (Min et al., 2023). These
would allow different algorithms to be compared objectively and
foster improvements (much as ImageNet accelerated computer
vision, a curated “FoodNet” could accelerate Al for food safety). The
academic community should work closely with agencies like EFSA
(European Food Safety Authority), FDA, and others to align research
with regulatory needs - for example, focusing on the explainability
and reliability of Al models, as these are top concerns for regulators
(Dimitrakopoulou & Garre, 2025; Food and Agriculture Organisation
of the United Nations, 2024). Interdisciplinary research — bringing
together food science, computer science, and social science — will be
crucial to address not only technical issues but also risk communi-
cation and public acceptance of Al-driven food safety measures
(Almoselhy & Usmani, 2024).

Education is equally important, and universities should update their
curricula to prepare the next generation of food safety experts who are
fluent in AI (Tagkopoulos et al., 2024). This might mean new courses at
the intersection of food safety and data analytics, case studies on Al
applications, and even practical training on relevant software or coding
for students of food science and public health. Academic journals and
conferences can help transfer knowledge by setting up special issues and
forums on “Al in Food Safety,” making it easier to share best practices.
Academia can also act as a neutral source to give input on policies. For
example, university researchers might be commissioned to audit the
performance of an Al system used by a government, lending credibility
and transparency. Finally, the academic community, alongside in-
stitutions like FAO/WHO, should help ensure that the benefits of Al in
food safety are global (Organization, 2022). This could involve
capacity-building initiatives — training programs or toolkits — for
developing countries so they can also implement Al solutions appro-
priate to their context (perhaps focusing on mobile-based or low-cost Al
tools for local food safety challenges) (Issa et al., 2024).

11. Conclusions and future impact

Artificial intelligence is poised to revolutionise food safety and se-
curity globally. As Al is integrated with other leading technologies, we
are approaching a time when food safety issues can be better handled,
and many problems can be identified and prevented before they occur.
We analyse some possible future impacts and new ideas, drawing on
information from recent research and strategic planning exercises con-
ducted by international groups. A key anticipated impact is the shift
towards a “zero contamination” paradigm in food safety, whereby
advanced predictive and control systems drastically reduce the inci-
dence of hazards in the food supply (Janga et al., 2023). Al will be
central to this by enabling real-time, continuous monitoring across the
food chain. We can envision intelligent processing lines where Al vision
systems and sensors instantly detect contaminants (microbial, chemical,
or physical) and trigger automatic corrective actions (e.g., removing a
contaminated product from the line or adjusting a process parameter).
Some pilot food factories are already implementing such closed-loop Al
systems. As these technologies become more affordable and advanced,
their widespread use may lead to significant safety improvements, just
as industrial automation has in enhancing manufacturing quality. Pre-
dictive maintenance of food safety is another concept: just as Al is used
to predict machine failures in industry, it can also predict food safety
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failures (for instance, forecasting when a slaughterhouse’s processes
might lead to contamination events if cleaning is not performed sooner).

The global integration of data is likely to create a “nervous system”
for food safety spanning the planet. We anticipate an expansion of data-
sharing platforms and consortia where stakeholders contribute surveil-
lance data (testing results, illness reports, environmental data) into
shared Al-powered networks. This would enable every nation to receive
early warnings. Suppose an Al in a particular country detects a new form
of food adulteration. In that case, it can alert authorities and companies
worldwide to be aware of the same issue in imported products. The
FoodSafety4EU project in Europe highlights this trajectory, emphasising
“a culture of data sharing among stakeholders™ as essential to Al’s trans-
formative potential (Bayer et al., 2022; Lattanzio et al., 2025). By
breaking down data silos, Al can analyse a composite picture of food
safety that no single agency or company could assemble alone. In
practical terms, this might mean a future where a dashboard at the WHO
or FAO, powered by Al, continuously assesses global risks: integrating
climate data to warn of aflatoxin surges in certain crops, trade data to
flag unusual import patterns that could indicate fraud, and health data
to catch outbreak signals early across borders.
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