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ABSTRACT

The burden of food contamination and food wastage has significantly contributed to the
increased prevalence of foodborne disease and food insecurity all over the world. Due to this,
there is an urgent need to develop a smarter food traceability system. Recent advancements
in biosensors that are easy-to-use, rapid yet selective, sensitive, and cost-effective have shown
great promise to meet the critical demand for onsite and immediate diagnosis and treatment
of food safety and quality control (i.e. point-of-care technology). This review article focuses on
the recent development of different biosensors for food safety and quality monitoring. In
general, the application of biosensors in agriculture (i.e. pre-harvest stage) for early detection
and routine control of plant infections or stress is discussed. Afterward, a more detailed
advancement of biosensors in the past five years within the food supply chain (i.e. post-
harvest stage) to detect different types of food contaminants and smart food packaging is
highlighted. A section that discusses perspectives for the development of biosensors in the
future is also mentioned.

KEYWORDS

Biosensors; traceability tools;
food safety; food analysis;
smart packaging; food
contaminants

Transducer

’ and‘
—>—

Amplifier

Signal processor

Bioreceptor

Portable food safety enalysis tools

Control of oops

Sensitive, selective, low cost, simple

Plamnt disgises

1. Introduction
foodborne diseases has contributed significantly to

Ensuring access to sufficient amount of safe and
nutritious food yet environmentally friendly have
been a growing attention since the last decades. It is
notorious that the increasing prevalence of

the global burden of disease and mortality. This
results in public health problems as well as economic
and social concerns worldwide. According to the
World Health Organization (WHO), there are
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600 million (i.e. about 1 in 10 people in the world)
cases of people becoming ill after eating contami-
nated food. This number contributes to the global
deaths of 420,000 and the loss of 33 million healthy
years of life in 2010 [1]. Data from the annual report
on food security and nutrition further stated that
nearly 8.9% of the total population, or 690 million
people, in the world are hungry, although there is
sufficient food to feed the world’s population [2,3].

The burden of foodborne diseases and food
insecurity as part of food sustainability issues
have influenced both developed and developing
countries. However, the highest burden occurs in
low- and middle-income countries (i.e. developing
countries) that have a high level of poverty and
pollution. Rapid urbanization, changes in consu-
mer habits, globalization, and climate change have
been known to underpin greater challenges to
ensuring food safety and security [4]. According
to the global estimates, there are 31 foodborne
hazards causing 32 diseases, with the most promi-
nent cases being caused by bacteria, viruses, para-
sites, ~or  chemical  substances  through
contaminated food [4]. Meanwhile, food waste
and loss are strongly linked to food insecurity
and a high carbon footprint [5].

Contamination of food, along with food loss
and waste, may occur at any stage throughout
the food supply chain (i.e. the process from farm
to fork, including manufacturing, packaging, dis-
tribution, storing, and further processing or cook-
ing for consumption). This is because the process
inherently deals with the uncertainty of safety and
quality aspects [6,7]. Due to this, traceability
across the supply chain must be maintained and
continually developed by all sectors (i.e. govern-
ment, researchers, food industry, and consumers).
For instance, government should strengthen the
requirement of legislation and certification in the
food industry. Meanwhile scientific and industry
sectors should cooperate in developing better food
traceability system for ensuring food safety and
quality. Consumers, at the end, should demanding
more food information.

Smart food traceability has been known to sig-
nificantly help overcome the global challenges
related to food omics (i.e. the food fingerprint,
which covers the nutritional values, quality, and
authenticity of foods, as well as their safety and

security) [8]. Biosensors have been known to be
reusable and able to replace conventional analyti-
cal techniques by giving rapid, accurate, reliable,
and multiple analyses [9,10]. Many significant
advancements of biosensors for food safety and
analysis have been explored, including portable
detections of foodborne disease agents in contami-
nated food. The main principle of detection by
biosensors is the combination of a bioreceptor
(i.e. biological recognition element) with
a transducer (i.e. sensing element), generating
a measurable signal proportional to the concentra-
tion of analytes. Different types of biosensors have
been discovered based on the bioreceptor type (e.g.
enzymes, antibodies, microbes, etc.), yet the sig-
nificance is usually based on the interaction with
analytes (i.e. the need to be highly specific) [9].
Alternately, the most common type of biosensor
based on its transducer type is electrochemical,
while others include optical and mass-sensitive
biosensors [11].

Although there are many review articles dis-
cussing recent developments of biosensor in food
system [12-17], yet it is still limited to found one
that discuss applications of biosensor in a whole
complex system of food supply chain. The pre-
sence review article aims to combine previous
studies of biosensors in food safety and analysis
from pre-harvest to post-harvest stage. Highlights
on the advantages of different biosensors devel-
oped within the past 5years in correlation with
smart traceability system are discussed. In general,
there are three sections in this review. In the first
section, general concepts and the development of
food traceability systems and application of bio-
sensors as traceability tools from pre-harvest to
post-harvest are discussed. In the second section,
information regarding mechanisms and applica-
tions of biosensors in food safety and security is
mentioned. Lastly, the challenges and future per-
spectives of recent developments are mentioned.

2. Food traceability and biosensor
2.1. Food traceability

The International Organization for Standardization
(ISO) and Codex Alimentarius Commission (CAC)
define food traceability as the ability to follow or



track the movement or progress of a product (i.e.
feed or food) through the food chain, including
production, processing, and distribution [18].
Another extent to which the definition of food trace-
ability relates to assurance of food safety is made by
the American Production and Inventory Control
Society (APICS) [18]. The drivers or motivating
factors determining the necessity of food traceability
often differ depending on the specific information
needed along the supply chain. A review by Islam &
Cullen [19] classified the drivers into five categories,
including (1) legislation and certification, (2) safety
and quality, (3) customer satisfaction, (4) sustain-
ability, and (5) value and efficiency.

It is notable that the urgency for assurance and
transparency of food safety within the food supply
chain underlined those five driver categories. For
instance, certain legislation and certification of
a reliable traceability system are required to ensure
fair practices in food trade and facilitate the free
movement of safe food products within the region
[20]. Study by [21] and [22] to assess consumer
preferences and willingness to pay for traceable
food further proves the statement that food trace-
ability can provide customer satisfaction. The
rationale behind this is the significant number of
potentially substantial disruptions (e.g. food
pathogens, climate, etc.) during the supply chain
and the occurrence of food fraud for economic
gain that results in unsafe and unsuitable food
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for consumption [23]. As a result, more people
are becoming more knowledgeable about food
and demand food credibility or food supply
chain transparency.

Food traceability enables whole process moni-
toring of the uncertainty and complexity of the
food supply chain. Thus, ensuring food safety
and quality that prevent food waste and the possi-
bility of food contamination, causing foodborne
illness [24]. With rapid technological advance-
ments, traceability systems have progressed to
a smarter or more intelligent system (Figure 1).
The main principles of smart food traceability are
to leverage portable sensors and indicators to col-
lect more comprehensive, traceable, and timely
data about food products. The leading group of
technologies developed includes portable detection
devices, smart indicators and sensors incorporated
into food packages, data-assisted whole genome
sequencing, and other new digital technologies
(e.g. Internet-of-Things (IoT) and cloud comput-
ing) [8]. Table 1 summarizes the advantages and
disadvantages of current portable technologies.

2.2. Biosensors in supporting smart food
traceability

7In a similar direction with the development of
smart food traceability, research surrounding bio-
sensors has attracted researchers’ attention. In fact,
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Figure 1. Development stages of food traceability system. Reprinted from [18] with permission from Elsevier.
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Table 1. Advantages and disadvantages of portable traceability technologies.

Technology Advantage Disadvantage Ref
Vibrational Simple, low cost, portable, no or minimum sample  Unrealistic measurement due to low resolution, [25,26]
spectroscopy preparation, robust, rapid narrow wave number, and interference from

Array sensors

Simple, low cost and no need of chemical reagents,

environmental and food intrinsic factors
Unstable sensor due to environmental factors [27]

multi analysis (temperature, humidity) and other gases in the air.
Microfluidic system  Simple, rapid, minimum sample consumption, multi- Disposable leading to high detection cost, [28, 29]
functional integration, small size, multiplex require high technology (e.g. antibody
detection and portability immobilization), difficult integration of
microfluidic chips and peripheral devices
loT, blockchain, and Simple, decentralized data management, guaranteed Unable to eliminate the use of unauthorized or [30, 31, 32]
radio frequency data security, simultaneous data integration, wide fraudulent foodstuffs itself
identification application, and lower communication cost
(RFID)
Smartphone-based  Feasible, low cost, records organization, and practical Still dependent or semi-dependent on laboratory [33]
analysis

the current development of biosensors has further
surpassed the disadvantages of different portable
traceability technologies. Biosensors are well-
known in the food supply chain for meeting the
critical demand for onsite and immediate diagnosis
and treatment of food quality control. This is
because biosensors enable rapid yet selective, sensi-
tive, and cost-effective detection of targeted analytes.
Its ability to be easy-to-use without the need for
complicated and expensive sample preparation has
been one of the key features to be applied to point-of
-care (POC) technology [34]. POC in the food sup-
ply chain usually revolves around the concerns of
nutrient monitoring, food safety and security, and
food production environment control [35].

Within the pre-harvest stage, food crops might
be exposed to microbial infestation due to afla-
toxin contamination, deficiency of nutrients,
extreme weather conditions (drought and floods),
and others. Thus, early detection and routine con-
trol (i.e. traceability) are urgently needed to pre-
vent pre-harvest loss and further contamination in
the supply chain. Many of the biosensors devel-
oped have been focusing on the detection of crop
pathogens. For instance, a gold nanoparticle
(AuNP)-based lateral flow biosensor integrated
with universal primer-mediated asymmetric poly-
merase chain reaction (UP-APCR) was developed
for rapid visual detection of Phytophthora infes-
tans, the casual late blight disease in potatoes and
tomatoes [36]. The visual detection was done
using sandwich-type hybridization assays with
a detection limit of 0.1 pg/uL genomic DNA and

high specificity within 1.5 hours. Figure 2 presents
the mechanisms of the developed biosensor for
rapid detection of P. infestans [36].

Other biosensors were developed to minimize
abiotic stress-mediated crop loss based on phyto-
hormone responses, the production of small mole-
cules, free radicals, etc. An electrochemical
biosensor to monitor phytohormones, such as sal-
icylic acid, was developed by utilizing micronee-
dle-based electrodes. The electrodes are known to
be functionalized with a layer of salicylic acid-
selective magnetic molecularly imprinted poly-
mers. The biosensor showed a detection limit of
2.74uM in both in vitro and in vivo [37]. More
examples of biosensor application and comparison
with conventional techniques within the pre-
harvest stage (i.e. in the agriculture) are summar-
ized in Table 2 as well as elaborately described
elsewhere [58-60].

On the other side, the post-harvest stage usually
consists of a more aggregate and complex process,
including harvesting, sorting, storage, processing,
packaging,  distribution, and  consumption.
Application of biosensor in the post-harvest stage
generally deals with food safety and authentication
analysis which are mainly done during production
and processing to ensure the food’s suitability. The
analysis might include internal (e.g. nutrients, taste,
pH, acidity, enzymes, etc.) and external (e.g. color,
odor, texture, etc.) qualities [58]. As food is still con-
stantly moved from one process to another until it is
bought by consumers, the need for smart traceability
is still urgent. This is because, after being packaged,
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Figure 2. Mechanism of AuNP-based biosensor based on UP-APCR for rapid detection of P. infestans. A region of P. infestans-specific
repetitive DNA sequence was amplified to generate large amounts of ssDNA using APCR. The ssDNA was then applied to the lateral
flow biosensor, giving a characteristic red band when there is AuNPs accumulation. Reprinted from [36] with permission from

Elsevier.

the food is still prone to contamination and deteriora-
tion due to changes in the surrounding environment.
While biosensors are known for their great ability to
conduct onsite food safety and analysis, the recent
development of biosensors as part of smart food
packaging has further shown the great potency of
biosensors in food traceability systems. As an active
and intelligent system, smart food packaging enables
manufacturers and consumers to trace the product’s
conditions during storage and distribution while
extending and maintaining the shelf-life and quality
of the food [61,62]. This smart packaging has been
incorporated into perishable products such as dairy,
meat, seafood, fruits and vegetables, as well as bakery
and confectionery products in recent years. The sche-
matic mechanism of active and intelligent food packa-
ging is shown in Figure 3 [63].

The underlying mechanism of active packaging
to prolong shelf-life, maintain nutritional and

organoleptic quality, inhibit microbial contamina-
tion or growth, and prevent the contaminants’
migration is known through the interaction of
the product, package, and environment through
the absorption of oxygen, ethylene, moisture, car-
bon dioxide (CO,), and odors, as well as the
release of CO,, ethanol, flavor, and antimicrobial
agents [61]. Meanwhile, intelligent packaging sys-
tems play roles to detect, record, trace, or commu-
nicate information about the food products within
the food chain by perceiving information concern-
ing the initial food composition and storage con-
dition, headspace composition, and microbial
growth through three principal systems: indica-
tors, sensors, and radio frequency identification
systems (i.e. data carriers) [64].

A biosensor incorporated with nanomaterials (i.e.
nanosensors) has been extensively researched for their
excellent prospects in food safety analysis and smart
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Table 2. Recent advancement of biosensors as smart food traceability system.

Category Advancement Advantage Future direction References
Agriculture Monitor dissolved oxygen in In-situ, continuous, and autonomous Stable over long-term performance [38]
water
Detect antibiotics in soil Simultaneous, easily parallelizable, cost-  Specifically measure the concentration of [39]
effective a particular tetracycline type
Monitor soil contamination Simple, reliable, safe, inexpensive, Real time application in soil [40, 41]

portable, highly responsive, ambient
light blocked, temperature controlled,
and water jacketed
Detect plant infections, abiotic ~ On-site, in-vivo, online, and fast detection More research and development [42, 43]
stress, metabolic content, and reproducibility
phytohormones, miRNAs,
genetically modified (GM)

plants
Food Determine polyphenols Easy sample preparation, selective and Simple optimization method to limit [44]
quality sensitive, reproducible, low cost, interference of electrodeposition of
portable, wide linear range, and nanoparticles
accurate with excellent limit of
detection (LOD)
Assess antioxidant capacities Sensitive and precise, fast response time, Integration of intelligent devices, [45]
and ease of miniaturization functional material application and
model diversification, and explicit
mechanism
Assess food authenticity and Highly selective and sensitive, facile, Modification of nanoparticles with [46, 47]
detect illegal food additives robust, portable, cost effective, higher specific ligands to improve selectivity,
detectability, universal simple sample pretreatment
Detect food freshness Highly sensitive, low cost, robust, and Increase rate of reusability with simple [48]
portable cleaning process
Quantify ethanol in beverages  Simple, fast, and highly sensible with Usage of nanomaterials to enhance [49]
elevated stability and biocompatibility sensibility and applied for monitoring
fermentation stage
Monitor survival and freshness of Simple, rapid, and accurate Longer lifespan, stable over [50]
fish environmental factors, multiple
freshness marker measured, and low
cost
Food Detect allergens sensitive, selective, low-cost, and time-  Associations of different transducer [51]
safety efficient systems and nanomaterials with novel
immobilization methods
Detect antibiotics Simple, low price, rapid response, real-  Improvement in electrode materials (e.g. [52], 53]
time, good selectivity and sensitivity, improve electrical conductivity and
easy miniaturization catalytic activity, amplifies
biorecognition events), usage of
different kind of nanomaterials,
development of aptamers and
molecularly imprinted polymers (MIPs)
for multi-target analysis
Detect pathogenic Rapid, real-time, easy to carry out, and More sensitive and specific portable [54]
microorganisms less labor-intensive biosensor for utilization on farms to
detect pathogens of fresh produce
surface
Detect fungal and bacterial High specific affinity, good chemical Sunlight powered and self-powered [55]
toxins stability, low cost, easy to synthesis and  biosensor, split-type PEC biosensors
modification and integrating PEC biosensing with
arrays, microfluidics and chips for high-
throughput and automation analysis
Detect chemical contaminants Low cost, continuous, specific, real-time, Lower production cost to promote [56, 57]
(e.g. heavy metals, pesticides) rapid, multiple analysis commercialization, modular assembly

for real-time POC analysis,
incorporation with nanotechnology
and CRISPR-Cas-based diagnosis




A
PROTECTION AND PRESERVATION
extend shelf-life or improve safety or
sensorial properties af packaged fand,
keeping thelr quality

L%

-

B package interacts with food, headspace,
surrcunding medium and consumers

Froduct oF paviromnment Uyformolion

BIOENGINEERED 7

o
COMMUNICATION

centrol and inform the state of
packaged faads ar the anviranment
surrgunding them

SURROUNDING .E.’;‘
MEDIUM ‘i

-

&>
&
Al ,
¢
w3 SURROUNDING
1 "' r— MEDIUM
o o

e
¥ =

Active polymers
with intrinsic active properties

£ )o £4%0 ¢ ° o @ °

Active components

added to the packaging to absorbed or release compounds

to food, to headspace or to the surreunding medium

Figure 3. General schematic diagram of active and intelligent food packaging. Reprinted from [63] with permission from frontiers

(CC-BY 4.0 license).

packaging. Nanomaterials have been explored for
their great antimicrobial, mechanical, optical, and
thermal properties to indicate the freshness, period
for safe consumption, storage temperature, and others
of food [65]. Current discoveries of the combined
integration of biosensors with nanomaterials include
the development of a microfluidic colorimetric bio-
sensor using gold nanoparticles (AuNPs) for rapid
detection of Escherichia coli O157:H7 concentrations
in chicken samples with color change output [66].
This combined integrated biosensor and nanomater-
ials have shown a breakthrough in the challenges of
smart food packaging, where gold nanoparticles pro-
vide an excellent platform for fast, low-cost, portable,
and on-site food safety biosensors through their
hydrogen bonding, nucleic acid hybridization, apta-
mer-target binding, antigen-antibody recognition,
enzyme inhibition, and enzyme mimicking activity
[67]. Another great bio-based material employed as
biosensors for food packaging is chitosan-based
hydrogels that have antimicrobial, antioxidant, and
biodegradability qualities [67]. Table 2 summarizes
the present development of biosensors in smart food
traceability system from pre-harvest stage (i.e. agricul-
ture) to post-harvest stage (i.e. to determine food

quality and safety).

3. Biosensors in food safety and security

Increased food demand because of exponential
population growth have prompted the need to
frame the food security challenge and solution
through food system transformation. The food sys-
tem should adopt a multidimensional approach at all
stages of the food supply chain (from production to
consumption) to be environmentally, economically,
and socially sustainable, resilient, and efficient
[68,69]. As mentioned by [70], technologies such as
remote sensing, tracing and tracking, active packa-
ging, etc. are promising tools to tackle food security
issues. This is because it could reduce the demand
trajectory, fill the production gap, and avoid produc-
tion losses. Biosensors represent a cutting-edge fron-
tier in food traceability systems, enabling smart food
safety and quality management tools. Thus, food
security issues due to food contamination and the
deterioration of nutrients and qualities could also be
easily traced and prevented.

There have been many types of biosensors devel-
oped around food safety and quality tools, yet the
main classification of biosensors in foodborne appli-
cations is based on their transducers. Optical biosen-
sors, whose output signal is light emission, usually
allow direct (label-free) detection of foodborne
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pathogens. The basic detection principle is usually
found when cells bind to receptors or become immo-
bilized on the transducer surface, causing changes
that can be detected by the sensors. Electrochemical
biosensor detection, on the other hand, is primarily
relate to the ability to detect specific molecules (e.g.
DNA-binding drugs, glucose, hybridized DNA). The
principle is based on the measurable electrons or
ions that are produced or suppressed by different
types of chemical reactions [71].

The applications of biosensors within food
safety and security include the detection of food-
borne pathogens, toxins, veterinary drugs, pesti-
cides, and other chemical contaminants (i.e. food
allergen, heavy metals, etc.) as described next.
Table 3 summarizes the development of biosensors
to detect contaminants that concern food safety
and quality.

3.1. Detection of foodborne pathogens

The majority of foodborne disease outbreaks are
caused by various forms of pathogenic bacteria,
viruses, and parasites. Among the severe and fatal
bacterial infections, Salmonella, Campylobacter,
and enterohaemorrhagic E. coli are the most com-
mon pathogens, affecting millions of people
annually. The symptoms might include fever,
headache, nausea, vomiting, abdominal pain, and
diarrhea. Outbreaks of salmonellosis are usually
linked with eggs, poultry, and other products of
animal origin, while foodborne cases caused by
Campylobacter are mainly caused by raw milk,
raw or undercooked poultry, and drinking water.
Enterohaemorrhagic E. coli, on the other hand, is
usually associated with unpasteurized milk, under-
cooked meat, and contaminated fresh fruits and
vegetables. Other bacteria that have caused food-
borne diseases are Listeria infections from unpas-
teurized dairy products and various ready-to-eat
foods, and V. cholerae, which mainly contaminate
rice, vegetables, millet gruel, and various types of
seafood [4].

Recently, a ratiometric electrochemical biosen-
sor based on the combination of SRCA (Saltatory
Rolling Circle Amplification) and the CRISPR/
Casl2a (CRISPR associated with system 12a) sys-
tem for ultrasensitive and specific detection of
Salmonella in food was developed. The basic

principle of detection lies in the self-calibration
of ratiometric electrochemical measurement to
reduce internal or external disturbances, along
with specific signal amplification using rapid
SRCA amplification technology and the trans-
cleavage capabilities of Cas12a. The biosensor dis-
played a detection limit as low as 2.08 fg/uL of
Salmonella in pure culture and 100% sensitivity,
97.8% specificity, and 98% accuracy in the actual
sample [122]. Another low-field NMR (Nuclear
Magnetic Resonance) biosensor based on a high-
density carboxyl polyacrylate targeting gadolinium
(Gd) probe was developed to rapidly detect
Salmonella in milk. Figure 4 presents the sche-
matic diagram of the principle of the NMR bio-
sensor for detecting Salmonella in milk samples.
At first, the target probe was obtained through an
amide reaction resulting in activated polyacrylic
acid and streptavidinylated polyacrylic acid (SA-
PAA), which further undergoes a chelating
adsorption reaction for gadolinium. The target
probe of SA-PAA-Gd was then used to capture
Salmonella through antigen-antibody interaction.
This biosensor has shown a detection limit of
3.3x 10> CFU/mL within 1.5 hours [123].

E. coli O157:H7, as part of the Shiga-toxin-
producing E. coli (STEC), and C. jejuni infections
have also presented an alarming challenge in food
safety. [124] developed a microfluidic chemilumi-
nescence biosensor based on multiple signal
amplification of a combined CHA with H2-Au
NP-catalyzed CL reaction for rapid and ultrasensi-
tive detection of E. coli O157:H7. A label-free,
specific, rapid, and cost-effective electrochemical
biosensor has also been successfully developed
using phage EPO1 as the recognition agent for
detection of E. coli O157:H7 GXEC-NO7 in fresh
milk and raw pork [125]. For Campylobacter
detection, a whole-cell V. harveyi-based biosensor
assay developed to accurately quantify and observe
the interspecies signaling molecule of C. jejuni
called autoinducer-2 (AI-2) has shown great pro-
spect in complex food matrices of food production
[126]. A paper-based DNA biosensor based on an
enhanced chemiluminescence signal on a DNA
dot blot and a silica nanoparticle was also devel-
oped to monitor Campylobacter in naturally con-
taminated chicken meat without pre-amplification
[127].
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Category Analyte Type Bioreceptor  Food sample LOD Linear range References
Pathogen  Salmonella sp. Magnetic Phage Orange juice 5 CFU/mL 10% to 10% CFU/mL [72]
Salmonella sp. Electrochemical Phage Chicken 13 x 102 2 x10%to 2 x 10° CFU/ [73]
CFU/mL mL
Salmonella sp. Calorimetric Aptamer  Fresh-cut 60x 10"  6.0x 10" to 6.0 x 10° [74]
vegetable CFU/mL CFU/mL
Salmonella Electrochemical DNA Egg, milk 1 CFU/mL 1.8 x 10° to 1.8 CFU/mL [75]
typhimurium
Campylobacter Fluorescence Antibody  Poultry liver 10 CFU/mL 10 to 106 CFU/mL [76]
Jjejuni
Campylobacter Fluorescence Aptamer Livestock and 3 CFU/mL 10 to 107 CFU/mL [77]
jejuni dairy
E. coli O157:H7 Chemiluminescence DNA - 130 CFU/mL 2 x 10% to 10% CFU/mL [78]
E. coli O157:H7 Electrochemical Phage Fresh milk and 11.8 CFU/ 102 to 107 CFU/mL [79]
raw pork mL
E. coli Magnetic Aptamer - 1x10% CFU 100 to 400 pg/mL [80]
Yersinia Single walled carbon Antibody  Kimchi 10% CFU/mL 10 to 10* CFU/mL [81]
enterocolitica nanotube
Vibrio Electrochemiluminescence Aptamer - 1 CFU/mL 1 to 10° CFU/mL [82]
parahaemolyticus
Shigella flexneri Electrochemical DNA - 74 %1072 8 x 10" to 80 cells/ml [83]
mol/L
Staphylococcus Fluorescence Aptamer Pork and beef 25 CFU/mL 63 to 6.3 x 10° CFU/mL [84]
aureus
Vibrio cholerae Electrochemical DNA - 741 x 108 t0 107" and 107" [85]
107% to 1072 mol/L
mol/L
Norovirus Electrochemical Antibody - 60 ag/mL 1 fg/mL to 1 ng/mL [86]
Rotavirus Electrochemical Phage - 5 copies/mL 10 to 10° copies/mL [87]
Veterinary  Ampicillin Optical Antibody Milk 74%x107° 4%x10°to4x107° g/mL [88]
drug g/mL
Ampicillin Electrochemical Aptamer - 133 fg/mL  1.0x107° to 5.0 ng/mL [89]
Penicillin sodium  Electrochemical Enzyme Milk 0.64 ng/mL 0.1 to 10 ng/mL [90]
Kanamycin Electrochemical Enzyme - 0.5 pM 1pMto1puM [91]
Oxytetracycline Electrochemical Aptamer Milk 30.0 pM 1.00 to 540 nM [92]
Oxytetracycline Electrochemical Antibody - 0.33 ng/mL 1 to 200 ng/mL [93]
Tetracycline Electrochemical Aptamer Milk 31007 M 1x10t01x10°M [94]
Sulfameter Fluorescence Aptamer - 1.57 ng/mL 2to 250 ng/mL [95]
Mycotoxin  Aflatoxin B1 Electrochemical Aptamer Wine and soy 0.016 pg/ 0.1 to 10 pg/mL [96]
sauce mL
Aflatoxin B1 Electrochemical Antibody  Corn 0.54 pg/mL 1 pg/mL to 10 pg/mL [97]
Aflatoxin B1 Fluorescence DNA Peanut 0.92 pg/mL 0.001 to 80 ng/mL [98]
Ochratoxin A Optical Enzyme Maize 54 pg/mL 0.1 to 50 ng/mL [99]
Ochratoxin A Electrochemiluminescence Enzyme - 3 pg/mL  0.01 to 5 ng/mL and 5 to [100]
100 ng/mL.
Ochratoxin A Fluorescence Aptamer Rice 0.005 ng/ 0.01 to 10 ng/mL [101]
mL
Ochratoxin A Fluorescence Aptamer - 0.36 nmol/L 0.69 to 8.0 nmol/L [102]
Pesticide  Carbendazim Fluorescence Aptamer - 0.05 ng/mL 0.1 to 5000 ng/mL [103]
Carbaryl Colorimetric Enzyme - 0.008 ng/ 0.01 to 0.25 ng/mL [104]
mL
Carbaryl Electrochemical Enzyme Apple 4.5 nmol/L 5.0 to 30.0 nmol/L [105]
Food Ara h1 Fluorescence Aptamer - 0.04 ng/mL 0.1 to 100 ng/mL [106]
allergen Ara h1 Electrochemical Aptamer Cookie dough ~ 21.6 ng/mL 50 to 1000 ng/mL [107]
Tropomyosin Magnetic Aptamer Seafood 30.76 ng/ 0.1 to 2.5 pg/mL [108]
mL
Tropomyosin Fluorescence Antibody  Fish fillet and ~ 0.01 pg/mL 0.005 to 1 pg/mL [109]
meatball
Ovomucoid Electrochemical Phage - 0.12 pg/mL 1.55 to 12.38 pg/mL [110]
Arginine kinase Fluorescence Aptamer  Shellfish 0.298 pg/ 0 to 2.5 pg/mL [111]
mL
Beta-lactoglobulin  Fluorescence Aptamer - 0.048 mg/L 0.39 to 1000 mg/L [112]
Beta-lactoglobulin ~ Fluorescence Aptamer Infant food 96.91 pg/L 0.36 to 500 mg/L [113]
products

(Continued)
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Table 3. (Continued).

Category Analyte Type Bioreceptor  Food sample LOD Linear range References
Heavy Mercury Colorimetric Whole-cell 0.1 ppm 0.1 to 0.75 ppm [114]
metal Cadmium 0.2 ppm 0.2 to 0.75 ppm
Copper 2 ppm 2to 7.5 ppm
Lead (Il) Electrochemiluminescence Aptamer Water 0.059 ng/L 0.1 to 1x10° ng/L [115]
Arsenic (Ill) Electrochemical Whole-cell Water 1.5 ppb 2.5 to 50 ppb [116]
Copper (I) Bioluminescence Enzyme Water 2.5 mg/L - [117]
Others Acrylamide Fluorescence DNA Bread crust 241x107% 5%x103t01x107 M [118]
M
Hypoxanthine Colorimetric Enzyme Fish 8.22 umol/L 0.01 to 0.16 mmol/L [119]
Hypoxanthine Electrochemical Enzyme Fish 15 uM 50 to 800 uM [120]
Xanthine Electrochemical Enzyme Fish 0.35 nM 0.001 to 0.004 uM and [121]

0.005 to 50.0 uM

In viral pathogens, norovirus (NoV) is one of
the most common foodborne infections, causing
nausea, explosive vomiting, watery diarrhea, and
abdominal pain [4]. Given that NoV causes over
200,000 deaths each year, [128] created
a photoelectrochemical biosensor coupled with
a novel custom-made monoclonal antibody as
a convenient POC system for diagnosing NoV
infection and detecting NoV-contaminated food
samples. An electrochemical biosensor based on
specific binding peptides coated onto the gold
electrode has also exhibited highly specific detec-
tion of NoV from oysters [129]. The schematic
illustration of the biosensor to detect NoV is
shown in Figure 5 [129]. Similarly, [130] also
developed a 3D electrochemical aptasensor for
NoV detection in spiked oysters based on phos-
phorene-gold nanocomposites.

3.2. Detection of mycotoxins

Mycotoxins, the secondary metabolites produced by
fungi, have been known to have a significant toxicity
effect on human and animal health, economies, and
international trade. Mycotoxin contamination might
occur on crops either during harvesting or storage.
There have been about 300 mycotoxins identified and
reported to contaminate 30 to 100% of food and feed
samples in the world. Five major mycotoxin groups
that are commonly found are aflatoxins (AF), ochra-
toxins (OTA), fumonisins, zearalenone (ZEN), and
deoxynivalenol/nivalenol (DON) [131]. As multiple
mycotoxin contamination in foodstuffs poses syner-
gistic effects that cause a more significant threat to

human health, portable chemiluminescence optical
fiber aptamer-based biosensors for ultrasensitive
onsite assay of multiplex mycotoxins in food are devel-
oped [132]). With a LOD of 0.015-0.423 pg/mL, the
biosensor demonstrated sensitive and multiple analy-
sis of mycotoxins in infant cereals. The selective and
multiple analysis of the biosensor is mainly based on
optical fibers that have specific recognition of single-
stranded binding proteins (SSB) and mycotoxin apta-
mers (Jia et al., 2022).

Another portable chemiluminescence biosensor
for rapid on-field screening and quantification of
OTA in wine and coffee samples was developed
[133]. The user-friendly smartphone-based biosen-
sor was developed using the combination of low-
cost, disposable analytical cartridges that contain
a lateral flow immunoassay (LFIA) strip with the
chemiluminescence detection system of the smart-
phone camera as a light detector. The biosensor
showed a LOD of 0.3 and 0.1 ug/L for wine and
coffee, respectively. On the other hand, [6] success-
fully developed an electrochemical biosensor based
on E. coli as the signal recognition element, p-ben-
zoquinone as the mediator, and a two-step reaction
procedure. The biosensor showed detection limits
of 1 and 6 ng/mL for Aflatoxin B1 (AFB1) and ZEN,
enabling a promising tool for toxicity evaluation in
corn and peanut oils. Moreover, a colorimetric bio-
sensor with a wide detection range for dual myco-
toxins detection was developed using a Fe;0,/GO-
based platform for AFB1 detection and a Fe;O,
@Au based platform for OTA detection [134]. The
detection principle of a colorimetric biosensor is
shown in Figure 6 [134].
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Figure 4. Schematic diagram of NMR biosensor to detect salmonella in milk. Firstly, the target probe was prepared (a) followed with
detection of salmonella in milk (b). Reprinted from [123] with permission from Elsevier.

3.3. Detection of veterinary drug drugs (i.e. antibiotics) often leads to the deposition
of drug residues in the tissues and organs of food

Antibiotics, such as chloramphenicol, sulfadiazine, ] RS ) i
animals. This will then induce serious health hazards

neomycin, and kanamycin, are the major group of . :
veterinary drugs used in food-producing animals to (e.g. allergies, antimicrobial resistance) when accu-
prevent or cure disease. The misuse of veterinary =~ mulated in the human body. [109] have successfully
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Figure 5. Detection of Norovirus using peptide-coated electrochemical biosensor. Reprinted from [129] with permission from

Elsevier.

fabricated an ultrasensitive label-free biosensor
based on aptamer-functionalized 2D photonic crys-
tal (SiO2-Au-ssDNA 2D PC) to detect kanamycin in
milk. With the combination of the negatively
charged AuNPs and sulthydryl-modified ssDNA,
the biosensor has resulted in excellent performance
with a LOD of 1.10 pg/mL [135]. A more recent
development of an electrochemical biosensor with

targets (AFB1 and OTA)

a LOD of 0.6 pM to detect kanamycin in milk was
also manufactured based on exonuclease III-assisted
dual-recycling amplification [136]. The ultrasensi-
tive and catalytic signal amplification of the biosen-
sor were constructed using high-conductive
MXene/VS, and high-activity CeCu,O, bimetallic
nanoparticles as the electrode surface and nanozyme,
respectively. Meanwhile, the accurate detection of

o

= pH=12e E AFB1
=

Tt

N 0 i . 15| OTA

Figure 6. Detection principle of a colorimetric biosensor to detect AFB1 and OTA. Formerly, the two platforms of Fe;0,/GO and TP-
GO and Fe30,@Au and Au NPs were formed through the combination of an AFB1 aptamer and the complementary strands of an
OTA aptamer and probe, respectively. The absence and presence of both AFB1 and OTA will result in platform separation and
a colorless supernatant. The addition of an alkaline solution to magnetically separated solids and the usage of Au NPs in the
supernatant, on the other hand, results in a dark blue-colored solution. Reprinted from [134] with permission from Elsevier.



the biosensor was fabricated from the dual supple-
mentary recycling of primer DNA and hairpin DNA
(Figure 7).

Another ultrasensitive and selective colorimetric
biosensor based on G-quadruplex DNAzyme was
also developed to detect residues of tetracyclines in
foods [137]. Tetracycline antibiotics (e.g. tetracy-
cline (TET), oxytetracycline (OTC), chlortetracy-
cline (CTC), and doxycycline (DOX)) are widely
used in the field of livestock husbandry, and when
they are misused, their residues are often found in
animal-derived foods such as milk, honey, and
pork [138]. The buildup in the human body can
lead to serious diseases such as liver damage, tooth
yellowing, allergic disorders, intestinal flora disor-
ders, and bacterial resistance. The underlying
mechanism of the biosensor to give results of
tetracycline detection that could be determined
even by the naked eye is based on the reaction
between tetracycline and DNAzyme, which is
composed of hemin and G-quadruplex and has
peroxidase-like activity to form a stable complex
and reduce catalytic activity. This reaction will
then cause the solution’s color to change from
yellow to green [137]. A more recent similar col-

orimetric ~biosensor to detect tetracycline
s
i
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antibiotics was constructed with a LOD of 0.333
ng/mL [139].

Furthermore, ampicillin (AMP), as one of the
most used P-lactam antibiotics with antibacterial
activity against gram-negative and positive bac-
teria, is also extensively used in agriculture, live-
stock, poultry, aquaculture, etc. There have been
a number of severe environmental and food safety
concerns recorded due to the overdose of this
antibiotic, including endocarditis, membranitis,
intestinal infection, and irritability. Yadav et al.
[140] have successfully fabricated a label-free elec-
trochemical immunosensor based on molybdenum
disulfide nanoparticles modified disposable
indium tin oxide (ITO) with a LOD of 0.028 pg/
mL in different food samples (milk, orange juice,
and tap water). Detection of sulfamethazine, which
is the most widely used and detected sulfonamide
in animal-derived foods, was also studied with an
antibody-antigen-aptamer sandwich electrochemi-
cal biosensor [141].

3.4. Detection of pesticides

Organophosphate (OPP) and carbamate pesti-
cides have had a positive impact on insect pest

Hud

o - Ev

e

Dual-r e’} cle

Figure 7. Schematic diagram of electrochemical biosensor based on exonuclease-lll-assisted dual-recycling amplification for rapid,
sensitive, and accurate detection of kanamycin in milk. Reprinted from [136] with permission from Elsevier.
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control and crop production globally. However,
the indiscriminate and widespread use may result
in impending toxicity to the environment and
human health [142]. The progressive research
on the development of various biosensors has
ranged from the use of conventional immobiliz-
ing supports to more advanced hybrid or com-
posite nanomaterials [143]. Previous reviews by
[144] and [145] have summarized different enzy-
matic electrochemical biosensors for pesticide
detection in foods. In particular, the inhibition-
based biosensors that utilize the acetylcholines-
terase (AChE) enzyme are shown to be mostly
preferred. This is because the toxicity of organo-
phosphorus pesticides will result in the formation
of covalent bonding and the permanent inactivity
of the AChE enzyme (Figure 8a).

For instance, a low cost and highly sensitive
biosensor which immobilized the AChE enzyme
on zinc oxide (ZnO) demonstrated excellent per-
formance with the detection limit range from 0.5
nM-5 uM [147] (Figure 8b). A graphene/chitosan/
parathion multi-residue electrochemical biosensor
was also fabricated to detect 11 types of OP pesti-
cides through an indirect competitive method
[148]. The biosensor was prepared by combining
the formation of phosphorylated AChE between
organophosphorus molecules and AChE as well
as the excellent conductivity of graphene.
Likewise, a portable electrochemical biosensor
was constructed by integrating a laser-induced
graphene (LIG) electrode on polyimide (PI) foil
and MnO, nanosheets loaded on the paper [149].
With a ‘sign-on’ electrochemical response of OPs
determination in vegetables, the detection
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principle of the biosensor is known to rely on
AChE-catalyzed hydrolytic product-triggered dis-
integration of MnO, nanosheets. Another type of
biosensor, which is voltametric with confirmed
reusability after 90 days, was also executed based
on enzyme activity inhibition of fungal laccase and
bacterial catalase [150].

3.5. Detection of other contaminants

Although it is not a common food allergen, there
has been a growing incidence of mustard allergies.
Therefore, a disposable electrochemical PCR-free
biosensor was generated for the selective detection
of protein Sin a 1, the most potent allergen in
yellow mustard [151]. The detection principle
was done through the formation of DNA/RNA
heterohybrid-specific antibodies by sandwich
hybridization, resulting in simple and fast detec-
tion with a LOD of 3 pM. In a similar direction,
[152] have successfully fabricated an aptameric
biosensor using graphene oxide to detect the
alarming shrimp allergy due to tropomyosin. The
advancement of biosensors that allow allergen
detection and evaluation of allergy drugs was also
studied. Jeong et al. [153] constructed
a bioelectronic sensor based on nanovesicles com-
bined with anti-immunoglobulin E (anti-IgE) anti-
body receptors for signal amplification. The
sensing system showed that it was sensitive and
selectively able to detect the peanut allergen
Arachis hypogaea 2 (Ara h 2) with a LOD of 0.1
fM in real food samples such as peanut and egg
white.
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Figure 8. (a) inhibition activity of AChE by OP and carbamate pesticides. Reprinted from [146] with permission from hibiscus
Publisher (CC by 4.0 license); (b) schematic diagram of zinc oxide (ZnO)-based biosensor to detect OP. Reprinted from [147] with

permission from MDPI (CC by 4.0 license).



Heavy metals (e.g. mercury, lead, cadmium,
and arsenic) are known to pose a serious threat
to food safety if consumed above the weekly
allowable intake. [154] developed a cell-free
paper-based biosensor for on-site detection of
Hg*" and Pb** in water using a combination of
in vitro transcription (IVT) technology with
allosteric transcription factors (aTFs). The detec-
tion principle mainly relied on the aTFs specific
affinity characteristic toward metal ions that
cause dissociation from DNA and result in
a measurable signal of transcribed fluorescent
RNA (Figure 9). Copper is a heavy metal that
is also classified as an essential micronutrient for
performing various bodily functions for plant,
animal, and human health (e.g. production of
red blood cells, collagen, energy, etc.). Copper
should be monitored on a regular basis to avoid
toxicity and health problems caused by over-
and underconsumption [155]. Zunar et al.
[156] have successfully transformed the native
copper response of yeast S. cerevisiae into
a whole-cell eukaryotic whole-cell copper bio-
sensor to evaluate copper bioavailability.

Food additives, in particular hydrogen peroxide
(H,0,), are strong oxidizing agents that are often
used in food processing as a bleaching agent in
wheat flour, an antimicrobial agent in milk, or
a sterilizing agent for food packaging materials.
As high ingestion of hydrogen peroxide could

A cell-free pap

AL
¥

Aol
W - s |

TNJGB nptemar
@

Without target

.-'.}.-.
AP ',litl
P LT

DFHE-AT
* _aU ll I|

Wl B gt

0.1 nM for Pb™* under UV

Limit of detection

BIOENGINEERED (&) 15

result in significant health hazards, Vasconcelos
et al. [157] developed a chemiluminescence bio-
sensor using a hydroxyethylcellulose-based mem-
brane to detect hydrogen peroxide (H,O,) in
different types of milk (i.e. fresh-raw, whole, semi-
skimmed, and skimmed milk). The biosensor
proved to be a quick, environmentally friendly,
and low-cost method for detecting H,O, in milk,
with a LOD of 1.0x 107> % w/w for fresh, raw,
skim, and whole milk, and 2.0 x 10~ % w/w for
semi-skimmed milk. Moreover, synthetic colorants
that are often used to enhance the sensory proper-
ties of foods are known to contain azo compounds,
which pose hazards to human health. A study by
Manjunatha [158] developed a sensitive and selec-
tive cyclic voltammetric sensing system that uti-
lized a poly (glycine) modified carbon paste
electrode to determine tartrazine with a LOD of
2.83x 1077 mol/L.

4. Challenges and future perspective

Despite the necessity of traceability system within
the complex food supply chain, not all food com-
panies have sufficient economic value or scale to
invest in. It is claimed by many studies that bio-
sensors are cost-effective, yet the cost to manufac-
ture biosensors still needs to be reduced as
commercial applications are still lacking.
Currently, self-powered biosensors based on
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Figure 9. Schematic diagram of a cell-free paper-based biosensor for on-site detection of heavy metals Hg** and Pb?* in water

based on aTfs. Reprinted from [154] with permission from Elsevier.
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biofuel cells have attracted great interest as they
could advance the cost-efficiency of biosensors to
another extent while being user-friendly and
highly suitable for miniaturization, portability,
and wearability [159]. Lack of uniformity in the
systems, coordination, allocation of costs and ben-
efits for research and development, as well as glo-
balization pace, climate, geographical location, and
natural resources between each country have pose
further challenges for implementing efficient
application of biosensor for food system. [160]
have successfully developed a highly thermal and
storage stable electrochemical biosensor for facil-
itating rapid pesticide detection of fruits and vege-
tables in a variety of climates. Another biosensor
developed with long shelf life after 40 days also
further supported the advancement of biosensor
to tackle challenges in food safety and analysis
technologies [161].

Furthermore, as nanomaterials could be toxic,
the fabrication of biosensor using this material
might rise other challenges related to health.
Therefore, further study on green synthesis and
incorporation of biocompatible materials have
grasped the insurgencies along with enhancing
the sustainability value of biosensors in the food
system (i.e. repurpose, reuse, degradable, or recycl-
able material) [162]. Development of biosensors
using microorganisms as the bioreceptor also
have attracted many researchers’ attention. This
is because the regulatory genes and proteins of
microorganisms  possess  various responsive
mechanisms to cope with environmental stress,
pollutants, and heavy metals [163,164]. This then
could be useful for the development of biosensor
in agriculture as well as environmental monitor-
ing. By having minimum requirements of electri-
city, water, gas, and energy from biosensor,
minimal generation of carbon footprints could
also be achieved.

As food system has become more complex, it is
also urgently needed nowadays to have a more
integrated food detection system. Biosensor com-
bined with emerging technologies, such as smart-
phones, 3D printing, IoT, Al, and blockchain,
could lead biosensor into another extend of
advancement. For instance, combining biosensor
and smartphone could significantly improve detec-
tion accuracy and shorten the detection time due

to the automation and cloud-data saving from
smartphone. With the current globalization
where smartphones are being used by almost all
people, smartphone-assisted biosensors will give
enormous potential for onsite detection of food
contaminants. For instance, Abdelbasset et al.
[165] discussed that smartphone-based aptasensor
offers a semi-automated user interface that can be
exploited by an inexpert person, along with fast
and wireless data transferability. It could then be
a breaking stone for onsite, portable, and simple
monitoring in the smart food traceability system.
As for sensor array, it can improve the specificity
of biosensor due to its ability to accurately identify
very similar and wide range of analytes in mixtures
for fingerprint identification. This then can be
used for detecting any food adulteration. Lastly,
biosensor and IoT technologies could lead in the
wireless transmission technology [154,166].

5. Conclusion

The increased prevalence of foodborne illness and
food insecurity have shown great urgency in devel-
oping smart food traceability systems that are rapid,
accurate, reliable, low cost, and able to conduct
multiple analyses. Many advancements in biosen-
sors over the years have shown great promise in
enabling whole process monitoring to tackle the
uncertainty and complexity of the food supply
chain. The present review highlights different fabri-
cations of biosensors within the pre- and post-
harvest stages of food (e.g. agriculture, detecting
biological and chemical food contaminants, smart
food packaging). Based on the current trends, many
biosensors associated with nanoparticles have more
advantages, such as a lower detection limit, higher
sensitivity, selectivity, and stability over long-term
usage. However, there are still, many challenges to
be tackled and improved in the future.
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