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Abstract

Food quality and safety are essential for ensuring public health, preventing foodborne
illness, reducing food waste, maintaining consumer confidence, and supporting regulatory
compliance and international trade. This has led to the emergence of many research works
that focus on automating and streamlining the assessment of food quality. Electronic noses
have become of paramount importance in this context. We analyze the current state of
research in the development of electronic noses for food quality and safety. We examined
research papers published in three different scientific databases in the last decade, leading to
a comprehensive review of the field. Our review found that most of the efforts use portable,
low-cost electronic noses, coupled with pattern recognition algorithms, for evaluating
the quality levels in certain well-defined food classes, reaching accuracies exceeding 90%
in most cases. Despite these encouraging results, key challenges remain, particularly in
diversifying the sensor response across complex substances, improving odor differentiation,
compensating for sensor drift, and ensuring real-world reliability. These limitations indicate
that a complete device mimicking the flexibility and selectivity of the human olfactory
system is not yet available. To address these gaps, our review recommends solutions
such as the adoption of adaptive machine learning models to reduce calibration needs
and enhance drift resilience and the implementation of standardized protocols for data
acquisition and model validation. We introduce benchmark comparisons and a future
roadmap for electronic noses that demonstrate their potential to evolve from controlled
studies to scalable industrial applications. In doing so, this review aims not only to assess
the state of the field but also to support its transition toward more robust, interpretable,
and field-ready electronic nose technologies.

Keywords: artificial olfaction; electronic nose; food quality; food safety; pattern recognition

1. Introduction
The development of the electronic nose started in the 1960s when researchers began

exploring artificial olfaction systems capable of mimicking the human sense of smell. In
1964, Wilkens and Hartman introduced the idea of simulating olfactory processes electroni-
cally, contributing to the theoretical groundwork for artificial odor recognition systems [1].
In 1965, Buck et al. explored how chemical compounds could be detected through surface

Sensors 2025, 25, 4437 https://doi.org/10.3390/s25144437

https://doi.org/10.3390/s25144437
https://doi.org/10.3390/s25144437
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3019-004X
https://orcid.org/0000-0002-6199-5289
https://orcid.org/0000-0002-5982-8190
https://orcid.org/0000-0002-1873-9597
https://orcid.org/0000-0003-1614-0211
https://doi.org/10.3390/s25144437
https://www.mdpi.com/article/10.3390/s25144437?type=check_update&version=2


Sensors 2025, 25, 4437 2 of 49

effects on metals and semiconductors, laying the principles that underpin modern gas
sensor technology [2]. Around the same time, Dravnieks and Trotter developed a polar
vapor detector based on contact potential modulation, an early precursor to volatile organic
compounds’ (VOCs) sensing mechanisms [3]. In the early 1980s, Persaud and Dodd pro-
posed a system designed to replicate the mechanisms of human smell perception using an
array of gas sensors combined with a pattern recognition algorithm [4]. A few years later,
Ikegami and Kaneyasu expanded upon this idea by applying an array of semiconductor
gas sensors to distinguish the freshness of food products [5]. The concept of an electronic
nose (e-nose) as we know it today is considered to be an intelligent system that integrates
an array of chemical or gas sensors with signal processing and pattern recognition mech-
anisms capable of identifying both simple and complex odors [6,7]. Early e-nose models
relied on metal oxide semiconductors and conducting polymer sensors, which, despite
their limitations, demonstrated the potential for detecting and discriminating complex odor
patterns associated with VOCs. Over time, advancements in sensor technology, nanomate-
rials, and machine learning have significantly improved the performance of e-nose devices,
enabling applications in various industries. Today, modern e-noses incorporate biosensors,
artificial intelligence, and miniaturized designs, making them more sensitive, selective, and
appropriate for real-world applications.

E-noses play an important role in improving quality control, safety, and efficiency in
various sectors, making them an indispensable technological advancement. Studies [8,9]
emphasize that e-noses are crucial for the following:

• Ensuring food quality and safety: E-noses help detect spoilage, contamination, and
adulteration in food products, ensuring freshness and quality control.

• Advancing medical diagnostics: E-noses are used in disease detection by analyzing
breath, sweat, or urine to identify biomarkers associated with conditions like diabetes,
cancer, and infections.

• Enhancing environmental monitoring: E-noses detect pollutants, hazardous gases, and
air quality changes, aiding in environmental protection and public health.

• Improving industrial process control: E-noses help monitor manufacturing processes, de-
tect leaks, and ensure consistent product quality in industries such as pharmaceuticals,
perfumes, and beverages.

• Strengthening security and defense: E-noses are used in explosive and drug detection,
helping in law enforcement and military and border security operations.

• Boosting agriculture and farming: E-noses assist in monitoring soil conditions, plant
health, and pest infestations by detecting VOCs released by plants to improve crop
yields and reduce reliance on harmful pesticides.

• Ensuring workplace safety: E-noses help prevent occupational hazards by detecting toxic
or flammable gases in industrial and laboratory environments.

1.1. Research Questions and Contributions

Ensuring food quality and safety is vital for protecting public health, preventing
foodborne illness, reducing food waste, maintaining consumer confidence, and supporting
regulatory compliance and international trade. In this context, a timely review of e-noses is
essential to capture recent innovations, discuss their advantages and limitations, and sum-
marize the key research directions in order to enhance food quality and safety assurance.

1.1.1. Research Questions

The research questions we explore in this survey include the following:

1. Research Question 1 (RQ1): What are the state-of-the-art research results over the last
decade in the field of e-nose systems aimed at food quality and safety?
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2. Research Question 2 (RQ2): What lessons have been learned from the design and
deployment of e-nose systems in laboratory and industrial settings?

3. Research Question 3 (RQ3): What research gaps exist in the application of e-noses
for food quality and safety, and what are the future research directions that we must
explore to address these gaps?

1.1.2. Research Contributions

We summarize the main research contributions of this work that address the research
questions above as follows:

1. We present an in-depth analysis of research results over the past decade in the e-nose
field designed for food quality and safety. We concluded the analysis based on a
proposed taxonomy, which we developed through a comprehensive examination
of peer-reviewed research papers from three scientific databases. We highlight key
technological advances, practical implementations, and performance results obtained
across various food sectors.

2. We identify critical lessons learned, such as the importance of e-nose components
selection (sensors, signal processing unit, data pattern recognition model) according
to the type of food and the need to develop suitable data pattern recognition models,
as well as new sensors tailored to food quality and safety assessment.

3. We identify current research gaps, such as the lack of real-world validation and
limited sensor sensitivity, and we discuss future research opportunities that will
improve the reliability, scalability, and industrial applicability of e-nose technologies
in food systems.

1.1.3. Organization of This Paper

We organize the rest of the paper as follows: Section 2 introduces the main components
of an electronic nose. Section 3 outlines our review methodology, introduces the final
dataset of documents selected for analysis, and presents relevant statistical information.
Section 4 analyzes the selected research works based on our proposed taxonomy and
discusses lessons learned. Section 5 addresses research gaps and recommends future
research directions. Finally, in Section 6, we make some concluding remarks.

2. E-Nose Components
The definition of an electronic nose presented in [6] highlights the key components of

such a system that work together to detect, analyze, and interpret odors: the sensor array,
the signal processing unit, and the pattern recognition system.

The sensor array is the core component of the e-nose, comprising multiple chemical
or gas sensors that respond differently to various VOCs, creating a unique pattern for
different odors. To provide a clearer understanding of sensor technologies, we adopted a
classification based on the way each type of sensor operates. Common categories include
the following:

• Chemiresistive sensors, such as metal oxide semiconductor (MOS) sensors [10] and car-
bon nanotube (CNT) sensors [11], detect gases through changes in electrical resistance
upon exposure to VOCs.

• Conductometric sensors, including conducting polymer (CP) sensors [12], alter their
conductivity in the presence of gas molecules.

• Mass-sensitive sensors, such as quartz crystal microbalance (QCM) sensors [13] and
surface acoustic wave (SAW) sensors [14], detect gas adsorption by measuring shifts
in resonant frequency.
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• Electrochemical sensors [15] convert chemical reactions at the electrode surface into
electrical signals.

• Optical sensors [16] monitor changes in light absorption, fluorescence, or scattering in
response to gas exposure.

• Field-effect transistor (FET)-based sensors [17,18], a growing category often involving
nanomaterials or 2D materials, modulate current flow through a semiconductor chan-
nel when exposed to target VOCs.

• Bioelectronic sensors [19] integrate biological recognition elements to selectively detect
specific VOCs.

Table 1 presents the advantages and application domains of the types of sensors that
can be used in the e-nose development process.

Table 1. E-nose sensor array types, their advantages, and application sectors.

Type of Sensor Advantages Application Sector

Chemiresistive sensors: MOS
High sensitivity, high selectivity,
durability, long lifespan, fast
response time

Air quality monitoring, food freshness
detection, industrial gas sensing,
medical diagnostic

Chemiresistive sensors: CNT
Ultra-high sensitivity, fast response
time, low power consumption,
miniaturization potential

Breath analysis for disease detection, air
quality monitoring, workspace safety

Conductometric sensors: CP Fast response time, low power
consumption, tunable sensitivity

Medical diagnostics, food quality
assessment, environmental monitoring

Mass-sensitive sensors: QCM High sensitivity, ability to detect
low-concentration gases

Breath analysis, detection of toxic
substances, fragrance quality control

Mass-sensitive sensors: SAW Fast response time, small size,
high ruggedness

Explosive and drug detection,
environmental monitoring,
workspace safety

Electrochemical sensors

High selectivity in terms of the
electrochemical properties of target
VOCs, low power consumption, reliable
detection of specific gases

Toxic gas detection, breath analysis, air
quality monitoring

Optical sensors
Non-contact sensing, high specificity in
terms of the chemical identity of VOCs,
fast response time

Industrial gas detection, medical
diagnostics, hazardous material
monitoring, food quality assessment

FET sensors
High sensitivity, fast response time,
compatibility with nanomaterials and
2D materials, fast electronic response

Medical diagnostics, food quality
assessment, environmental monitoring,
industrial process control, security
and defense

Bioelectronic sensors

High specificity in terms of molecular
recognition of target VOCs, biomimetic
functionality, potential for
personalized diagnostics

Disease detection, food
quality monitoring

The signal processing unit transforms sensor outputs into digital electronic signals for
further analysis. It includes amplifiers, analog-to-digital converters (ADC), and noise filters
to refine the data.

The pattern recognition system uses machine learning, artificial intelligence, or statistical
algorithms to analyze the sensor data and identify unique odor patterns by comparing
against a database of known smells. The most commonly used approaches include principal
component analysis (PCA) [20] (reduces the dimensionality of sensor data while retaining
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key information), linear discriminant analysis (LDA) [21] (classifies odors by maximizing
the separation between different groups), artificial neural networks (ANNs) [22] (mimics
brain-like processing to learn and recognize odors patterns), support vector machines
(SVMs) [23] (separate odor data into different classes using an optimal decision boundary),
and k-nearest neighbors (KNNs) [24] (classify odors based on similarity to known reference
samples). Within an e-nose, the sensor type determines the data characteristics, which
in turn influence the pattern recognition technique needed for effective odor analysis.
Therefore, MOS and CP sensors require fast, efficient recognition methods like PCA, ANNs,
and SVMs due to large sensor response variations; QCM and SAW sensors produce high-
precision frequency-based data, making ANNs and SVMs ideal for classification; optical
and electrochemical sensors work well with PCA and LDA for chemical discrimination;
and bioelectronic sensors use advanced techniques like ANNs to handle complex biological
interactions in odor detection. Table 2 presents the advantages of each pattern recognition
technique that can be used in the e-nose development process, the relation between these
techniques and sensor types, and also the areas where they can be used.

Table 2. Pattern recognition technique, their advantages, related sensor type, and application areas.

Pattern
Recognition
Technique

Advantages Type of Sensor Application Sector

PCA

- Reduces data dimensionality without los-
ing key information

- Enhances visualization and interpretation
- Improves classification performance
- Speeds up computational processing
- Enables unsupervised odor classification

MOS, CP, QCM, SAW,
CNT, optical sensors,
electrochemical sensors

Food quality control,
medical diagnostics,
environmental
monitoring, industrial
process control

LDA

- Maximizes odor class separation
- Enhances classification accuracy
- Reduces data dimensionality
- Speeds up computational processing
- Suitable for small and well-defined

datasets

MOS, CP, QCM, SAW,
optical sensors,
electrochemical sensors

Medical diagnostics,
food quality control,
environmental
monitoring, security
and defense

ANNs

- Can handle nonlinear and complex data
- High accuracy in odor classification
- Self-learning and adaptability
- Real-time processing capability
- Multi-modal data fusion
- Noise tolerance

MOS, CP, QCM, SAW,
CNT, bioelectronic
sensors

Medical diagnostics,
food quality control,
environmental
monitoring, security
and defense

SVM

- High classification accuracy
- Handles nonlinear and high-dimensional

data
- Effective for small datasets
- Works well with multiple sensor types
- Suitable for binary and multi-class odor

classification
- Works well in real-time applications

MOS, CP, QCM,
SAW, CNT

Medical diagnostics,
food quality control,
environmental
monitoring, security and
defense, workspace safety

KNN

- Easy to implement and interpret
- Effective for small and medium-sized

datasets
- Works well with multiple sensor types
- Adaptable for classification and regression
- Suitable for real-time odor analysis

MOS, CP, QCM,
SAW, CNT

Food quality monitoring,
environmental
monitoring, medical
diagnostics, industrial
process control
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We found that the results of the odor classification and analysis should be presented
in a more user-friendly manner (i.e., mobile and web-based interfaces), making them easily
accessible to e-nose end-users. This approach enhances efficient user interaction, enables
real-time monitoring, and improves data visualization.

In addition to the previously discussed components, an e-nose should include a
sample delivery system to ensure consistent, controlled, and repeatable exposure of VOCs
to the sensor array. This component plays a key role in enhancing the accuracy and
dependability of odor detection. It can include a sampling port to collect the gas sample,
pre-concentrators to enhance sensitivity by capturing and releasing VOCs, filters to remove
unwanted contaminants, flow controllers to regulate the gas rate and pressure, temperature
and humidity controllers to maintain optimal conditions to prevent variations in sensor
responses, a sample chamber to hold the gas sample for uniform interaction with the sensor
array, and pumps to facilitate the movement of the gas sample through the system, and a
ventilation system to ensure safe disposal of the analyzed gas after detection [25].

Figure 1 presents an overview of the e-nose components, highlighting the key elements
we have discussed above and their interconnections.

Figure 1. The main components of e-nose and their interactions.

3. Review Methodology
3.1. Criteria for Selecting Relevant Research Papers Used in This Review

To select the most relevant research papers used in this review, we adopted the strategy
in Figure 2.

1. In the first stage, we used the Scopus, IEEE Xplore, and Web of Science (WoS) electronic
databases to search for final peer-review English-language documents published be-
tween 2014 and 2025. We considered only documents of type articles, reviews, and
conference papers. We conducted the search using the following words appearing in
the title or abstract of the documents: electronic nose, e-nose, artificial nose, bioelec-
tronic nose, food quality, food safety, and food freshness.

2. In the second stage, we reviewed the titles of the documents retrieved from the search
query to remove duplicates.

3. In the third stage, we thoroughly reviewed the full text of the remaining documents
(after removing duplicates) before making the final selection, excluding unrelated
studies, highlighting the key sections relevant to our review, and identifying the taxon-
omy of the research literature on the development of e-nose technology/applications
in the field of food quality and safety.
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Figure 2. The three stages of the review methodology.

3.2. Preliminary Results Obtained

The search query results from the Scopus electronic database, retrieved on 6 March
2025, yielded a total of 69 peer-reviewed documents. These include 40 journal articles
(58%), 11 reviews (15.9%), and 18 conference papers (26.1%).

The search results from the IEEE Xplore database, retrieved on 6 March 2025, reveal a
total of 117 peer-reviewed documents. These include 21 journal/magazine articles (18%),
2 reviews (1.7%), and 94 conference papers (80.3%).

The search results from the Web of Science database, retrieved on 6 March 2025,
indicate a total of 465 peer-reviewed documents. These include 298 journal articles (64.1%),
120 reviews (25.8%), and 47 conference papers (10.1%).

After removing the duplicates, the preliminary documents dataset consists of
314 journal/magazine articles, 122 reviews, and 113 conference papers.

Table 3 presents an overview of the preliminary search results for the documents.

Table 3. Preliminary search results.

6 March 2025
Journal/

Magazine
Articles

Reviews Conference
Papers Total

Scopus 40 11 18 69
IEEE Xplore 21 2 94 117

WoS 298 120 47 465

Total 359 133 159 651

Total without
duplicates 314 122 113 549
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3.3. Final List of Selected Papers and Taxonomy of the Research Literature on E-Nose for Food
Quality and Safety

After a comprehensive analysis of the publications obtained in the second stage of the
selection process, we excluded those that (a) do not have food quality and safety as their
main research objectives (with terms like food, food quality, food safety, or food freshness
appearing only in the abstract); (b) primarily review the food quality and safety field,
presenting only general information about e-nose, such as definitions and descriptions of
basic components, alongside other systems, devices, or techniques for this purpose; (c) rely
only on the gas chromatography technique; (d) address food quality for animals; and (e) do
not show promising results in terms of performance metrics.

As a result, the final list of publications includes 397 documents, which include
241 journal/magazine articles, 80 reviews from journals and conferences, and 76 conference
papers from all the three electronic databases previously mentioned. Table 4 presents a
summary of the final list of publications.

Table 4. Final search results.

6 March 2025
Journal/

Magazine
Articles

Reviews Conference
Papers Total

Scopus 3 2 6 11
IEEE Xplore 5 0 35 40

WoS 233 78 35 346

Final total 241 80 76 397

Figure 3 presents an additional analysis of the data, which reveals that approximately
20% of the papers in the final dataset are review studies, and most of the original research
results have been published in journals/magazines. Additionally, 72% of the papers were
published in the past 5 years, which demonstrates the growing interest of the scientific
community in this topic.

Figure 3. Statistics from the final list of publications.

During this stage, we classified the documents in the final dataset into five distinct
classes. The first category covers review studies that focus on the application of e-nose
technology in the food industry. The second category includes papers that present the
development of new electronic noses for food quality and safety. The third category
comprises papers that use commercially available or researcher-developed electronic noses,
either alone or in combination with other techniques, for food analysis. The fourth category
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includes research studies that introduce new/enhanced gas sensors or novel materials for
gas sensor development with applicability in the food industry. The last category includes
papers that present the outcomes of applying existing algorithms or techniques for pattern
recognition or their fusion, on food-related datasets available online. Figure 4a illustrates
the taxonomy of the research literature on e-nose technology for food quality and safety
based on these categories. Figure 4b presents the distribution of papers in the final list of
publications belonging to each identified category.

(a) (b)

Figure 4. (a) Taxonomy of the research literature on electronic nose for food quality and safety.
(b) The distribution (by categories) of papers in the final list of publications.

As Figure 4 shows, most of research efforts have focused on analyzing food data from
commercial or laboratory-based e-nose systems, followed closely by studies dedicated
to developing new electronic nose systems. There are also several reviews that have
been published that cover the latest advancements in the field. Studies concerning the
development of new gas sensors and new algorithms/techniques for pattern recognition
using existing datasets have also attracted some interest.

4. Analysis of the Research Works from the Final List of
Selected Publications

In this section, we emphasize the novel contribution of our review when compared
with existing reviews that we selected in our taxonomy. Additionally, we present the
most promising research works from the final selection, encompassing the remaining
four categories of the taxonomy, and we highlight the key lessons learned from these
past studies.
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4.1. Reviews

As Figure 4 shows, we identified several review articles in our final selection of papers.
These published reviews covered several aspects on the topic of electronic nose.

4.1.1. Reviews on Advancements in Electronic Nose Systems for Food
Industry Applications

One category of review papers explored recent advancements in electronic nose
systems and their applications in the food industry. The studies [26–37] describe the
technologies used to develop each of the e-nose components and discuss some proposed
solutions of this type of systems. Some reviews focus on the advancement of electronic nose
technology in relation to a specific food category: meat [38–41], berries [42], oils [43,44],
fruits and vegetables juice [45], milk and dairy [46,47], tea [48], and wine [49,50].

4.1.2. Reviews on Sensor Development and Pattern Recognition Techniques in Electronic
Nose Systems

Reviews such as [51–58] investigate the progress made in the development of sensors
with high sensitivity and selectivity for detecting VOCs emitted from food, and highlight
the challenges related to sensor stability, cross-sensitivity, environmental interference, and
also their integration into e-nose-based applications. The authors of [59–62] reviewed
pattern recognition techniques that can be applied to electronic nose systems. In addition,
they also discussed current challenges and potential future directions of these methods.

4.1.3. Reviews on Recent Sensing Technologies for Food Quality Assessment

Another category of reviews focuses on recent sensing technologies for food quality
assessment. For example, refs. [63–73] present comprehensive reviews of electronic sens-
ing technologies (e-nose, e-tongue, e-eye) and their applications. Similarly, refs. [74,75]
highlight electronic noses as intelligent detection tools in the food industry, along with
technologies such as computer vision, intelligent tracing systems, intelligent colorimetric
films, and near-infrared spectroscopy.

4.1.4. Our Review on Sensor-Based Electronic Nose for Food Quality and Safety

Our review offers a comprehensive and structured examination of the past decade’s
research on sensor-based e-nose devices for ensuring food quality and safety. In contrast
with earlier efforts and past publications mentioned in Section 4.1.2, which focus on the
technologies used to develop e-nose components and explore proposed solutions, the
novelty of our contributions includes the following:

• Development and application of a unique taxonomy ensuring broad coverage and reduced
selection bias: We conducted an extensive analysis of peer-reviewed studies across
three major scientific databases, the taxonomy. The taxonomy enables a systematic
evaluation of technological advancements (both sensors and pattern recognition tech-
niques), practical implementations, and performance outcomes across the following
food and beverage sectors: meat, seafood, vegetables and fruits, spices, oils, coffee,
tea, diary, and alcoholic beverages.

• Decade-long coverage of research results: By capturing trends over an extended period,
our review offers an up-to-date perspective on technological evolution and trends.

• Lessons-learned synthesis: Our review identifies critical lessons learned from the existing
literature in each category from the taxonomy we developed. The lessons learned
will help guide both future academic research and practical development of e-nose
systems for food quality and safety.

• Identification of unresolved research gaps: Our review reveals notable gaps that must be
addressed in the future. These gaps include the lack of e-nose real-world validation,
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limitations in sensor sensitivity and stability, challenges in achieving miniaturize
and portable e-noses, lack of standardized testing protocols, limited real-time pro-
cessing capabilities, and insufficient support for user-friendly visualization of odor
classification and identification outcomes.

Our review serves as a valuable resource for researchers, especially those new to the
field of electronic noses for food quality and safety, because it provides a comprehensive
foundation and state-of-the-art, in-depth information on current technologies, applications,
and research directions in this area.

4.2. Electronic Nose Systems for Food Quality and Safety

Thirty-one percent of the journal/magazine articles and conference papers in the
final list of selected publications present electronic nose systems for odor authentication
and recognition, for quality assessment, and for quality monitoring of various food and
beverage products, including meat (i.e., chicken, beef, pork), seafood (i.e., fish, prawn),
vegetables and fruits (i.e., tomato, broccoli, banana, avocado), spices, oils (i.e., palm, olive,
sunflower, essential oils), coffee, tea, diary (i.e., milk), and alcoholic beverages (i.e., rice
wine, beer, scotch, whiskey, liquor). These papers describe the physical components of the
e-noses developed, along with the data analysis approaches used for odor classification
and identification. Table 5 briefly presents the analysis of these e-noses from the following
perspectives: design architecture (sensor array and signal processing unit), data analysis
techniques, evaluation and performance metrics, and application area.

Table 5. Summary of electronic nose systems for food quality and safety.

Paper Design Architecture Data Analysis
Techniques

Evaluation and
Performance Metrics Application Area

Electronic Nose Systems for Meat Quality and Safety

[76]
Sensor array: MQ-137,
MQ-136 [77],
TGS2602 [78];
Signal processing unit:
Arduino Uno R3

PCA Accuracy: 94.9%
(fresh/spoiled/rotten) Beef quality assessment

PCA + Probabilistic
Neural Network
(PNN) [79]

Accuracy: 100%
(fresh/spoiled)

[80]

IoT-enabled e-nose;
Sensor array:
AM2302 [81], one optical
sensor from Winsen
Electronics Technology
Co., Zhengzhou, China,
MH-Z19C [82],
ZE03-NH3,
ZE03-C2H4 [83];
Signal processing unit:
ESP32-S3 controller [84]

Linear Regression [85]

Aerobic bacteria and
Pseudomonas species
play a crucial role in the
production of VOCs in
beef

Beef quality monitoring
and spoilage detection

[86]

Sensor array: MQ-2,
MQ-3, MQ-4, MQ-6,
MQ-7, MQ-8, MQ-9,
MQ-135 [77];
Signal processing unit:
Arduino Mega 2560
microcontroller [87],
Raspberry Pi 4 [88]

PCA + SVM
Accuracy: 98.49%
(healthy/
compromised)

Chicken meat quality
assessment
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Table 5. Cont.

Paper Design Architecture Data Analysis
Techniques

Evaluation and
Performance Metrics Application Area

[89]

Sensor array: MQ-2,
MQ-3, MQ-6, MQ-7,
MQ-9, MQ-135,
DHT22 [90];
Signal processing unit:
Arduino Uno
microcontroller

SVM, Linear Regression,
KNN, Random
Forest [91]

Best accuracy: 100% for
Random Forest with
random split data; 69%
for Random Forest with
non-randomly split data;
78.5% for SVM with
group split data
(fresh/semi-
fresh/spoiled)

Chicken meat quality
assessment

[92]

Sensor array: HGS1000,
HGS1001, HGS1002,
HGS1007 [93];
Signal processing unit:
12-bit ADC with four
channels of input data;
heating voltage can be
set between 0 and 2.4V

Convolutional Neural
Network (CNN)
CNN [94] + time series
feature extraction [95]

Accuracy: 92.1%
(fresh/sub-
fresh/spoiled)
Accuracy: 98.4%
(fresh/sub-
fresh/spoiled)

Pork, beef, mutton,
chicken, crab, shrimp,
fish meat quality
assessment

[96]
Sensor array: MQ-2,
MQ-4, MQ-6, MQ-9,
MQ-135, MQ-136,
MQ-137, MQ-138,
DHT22;
Signal processing
unit: N/A

KNN

Accuracy rates between
97% and 100%
(variations of meat with
ratio 0%, 10%, 50%, 90%,
100%)

Authenticity of beef and
pork meat

SVM

Accuracy rates between
81.5% and 99.5%
(variations of meat with
ratio 0%, 10%, 50%, 90%,
100%)

Electronic Nose Systems for Seafood Quality and Safety

[97]

Sensor array: MQ-136,
MQ-137, MQ-5, MQ-8;
Signal processing unit:
N/A

Support Vector Machine
Regression Technique
(SVR) [98]

R-squared (R2): 0.981;
Root Mean Square Error
(RMSE): 0.012

Estimation of the
microbial population in
seafood

[99]

IoT-enabled e-nose with
image processing
capabilities;
Sensor array: N/A;
Signal processing unit:
N/A

A nonparametric
kernel-based modeling +
hidden Markov model

Quality model indices
closely align with the
manual results provided
by quality assurance
experts

Fish origin verification,
fish quality assessment

[100]

Sensor array: MQ-1,
MQ-2 and two MQ-135;
Signal processing unit:
ESP32 microcontroller

KNN
Accuracy: 98%
(fresh/less fresh/
not fresh)

Freshness and quality of
crabs

Naïve Bayes [101]
Accuracy: 91%
(fresh/less fresh/
not fresh)

SVM
Accuracy: 87% for SVM
(fresh/less fresh/not
fresh)
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[102]

Sensor array: TGS2620,
TGS2611, TGS822,
TGS832, TGS2602,
TGS2600, TGS826,
TGS825;
Signal processing unit:
N/A;
Preheating process
before using the
sensors

PCA

Cumulative variance of
the principal
component: 95%
(fresh/contaminated)

Tuna quality assessment
(Pseudomonas aeruginosa
bacteria)

SVM Accuracy: 99%
(fresh/contaminated)

[103]

Sensor array: MQ-2,
MQ-3, MQ-4, MQ-5,
MQ-6, MQ-7, MQ-8,
MQ-9;
Signal processing unit:
N/A

Linear Regression R2: 0.98;
Accuracy: 93.75%

Prawn quality
assessment

Electronic Nose Systems for Vegetables and Fruits Quality and Safety

[104,105]

Sensor array: MQ-3,
MQ-6, MQ-8, MQ-135;
Signal processing unit:
ADC for Raspberry Pi 4/
Raspberry Pi 3

CNN
Accuracy: 86%
(ripe/not
ripe/unknown)

Identification of the
ripening stage of tomato
fruits

[106]

Sensor array: MQ-135,
MQ-136, TGS822,
TGS2600, TGS2602,
TGS2603, TGS2610,
TGS2611, DHT22;
Signal processing
unit: N/A

Random Forest
Accuracy: 94%
(good/good/fair/
poor)

Identification of the
ripening stage of tomato
fruits

KNN
Accuracy: 83%
(good/good/fair/
poor)

ANNs
Accuracy: 79%
(good/good/fair/
poor)

SVM
Accuracy: 64%
(good/good/fair/
poor)

[107,108] Sensor array: MQ-135,
MQ-4;
Signal processing unit:
Gizduino micro-
controller [109]

ANNs

Accuracy: 93.33%
(not spoiled/
partially spoiled/
spoiled)

Tomato puree quality
assessment

Fuzzy logic
technique [110]

Accuracy: 90%
(not spoiled/
partially spoiled/
spoiled)
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[111]

Sensor array: TGS2620,
TGS823, DHT22; Signal
processing unit: Arduino
microcontroller

PCA + t-distributed
Stochastic Neighbor
Embedding [112] +
k-Means [113] + Long
Short-Term Model [114]

Accuracy: 99.46%
(fresh/half-
spoiled/spoiled)

Broccoli quality
assessment

[115]

Sensor array: TGS880,
TGS822, TGS826,
TGS2602, TGS2600;
Signal processing unit:
ATmega8 [116]
microcontroller with an
integrated ADC

PCA + Centroid link-
and completely-link
cluster analyses

Similarity levels >93%
for 3/4 of the samples
tested
(fresh/half/
completely
contaminated)

Broccoli quality
assessment
(Staphylococcus,
Salmonella and Shigella)

[117]

Sensor array: MQ-2,
DHT11; Signal
processing unit: Arduino
Uno microcontroller and
Node MCU [118]
IoT platform

Linear Regression,
Random Forest, SVR

Best performance with a
value of Mean Squared
Error (MSE): 0.1207 for
Random Forest

Banana freshness
assessment

[119]

Sensor array:
TGS2600, TGS2602,
TGS2603, TGS2610,
TGS2611, TGS2612,
TGS2620;
Signal processing unit:
NI DAQ card,
USB-6009 [120]

PCA + KNN
Accuracy: 98.10%
(unripe/half-ripe/fully
ripe/overripe)

Identification of the
ripening stage of banana

PCA + SVM
Accuracy: 95.24%
(unripe/half-ripe/fully
ripe/overripe)

LDA + KNN
Accuracy: 90.48%
(unripe/half-ripe/fully
ripe/overripe)

LDA + SVM
Accuracy: 86.67%
(unripe/half-ripe/fully
ripe/overripe)

[121]

Sensor array: MQ-2,
MQ-3, MQ-4, MQ-5,
MQ-7, MQ-8, MQ-135
sensors; Signal
processing unit: Arduino
Due [122]
microcontroller

SVM Accuracy: 99%
(rotten/fresh)

Avocado fruits quality
assessment
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[123]

Sensor array: MQ-136,
MQ-4, MQ-137, MQ-3,
MQ-2, MQ-135, MQ-131,
MQ-8, MQ-9; Signal
processing unit:
Raspberry Pi computer

PCA + KNN Accuracy: 92%
(spoiled/not spoiled)

Fruits (banana, pechay,
carrot, grape) quality
assessment

[124]

Sensor array: eight
BME688 gas
sensors [125];
Signal processing unit:
Adafruit Huzzah32
(ESP32) development
board [126]

Neural Networks [127] Accuracy: 76%
(spoiled/not spoiled)

Fruits and vegetables
quality assessment

Electronic Nose Systems for Spices’ Quality and Safety

[128,129]

Sensor array: TGS800,
TGS813, TGS823,
TGS2602, TGS2610,
TGS2611, TGS2620,
MQ-135;
Signal processing unit:
ADCs of a
Programmable Interface
Controller (PIC)
microcontroller

Random Forest
Accuracy: 100%
(nutmeg/
clove/cinnamon)

Identification of nutmeg,
clove, and cinnamon

[130]

Sensor array: TGS2600,
TGS2602, TGS2610,
TGS813, TGS822,
MQ-138, MQ-2 MQ-8;
Signal proc. unit:
AD7606 analog-to-
digital data acquisition
system [131] and
S3C6410-based Linux
platform [132]

PCA + SVM Accuracy: 95% Authenticity of star
anise

Electronic Nose Systems for Oils’ Quality and Safety

[133]

Sensor array: eight TGS
and MQ sensors, and
one temperature and
relative humidity
sensor;
Signal proc. unit: RPi
computer

Clustering
technique [134]

Identification of three
classes of palm oil:
never heated/heated for
10 to 30 h/heated for 40
to 60 h

Palm oil quality
assessment
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[135]

Sensor array: MICS-6814
MOS sensor [136],
MCP9700 temperature
sensor [137];
Signal processing unit:
ADS1015, PIC18F45K22,
FT230XS USB/UART
converter

ANNs
Accuracy: 99.49%
(degummed/extraction
/filtered/marketed)

Sunflower oil quality
assessment

[138]
Sensor array: MQ-3,
MQ-4, MQ-7, MQ-8,
MQ-135, MQ-137,
MQ-138, MG-811;
Signal processing unit:
N/A

ANNs (classification) Accuracy: 86.5% Extra-virgin olive oil
quality assessment

ANNs (regression)
Correlation
coefficient: 0.93;
Slope 0.90

[139]

Sensor array: MQ-2,
MQ-3, MQ-4, MQ-5,
MQ-7, MQ-8, MQ-9,
MQ-135;
Sensor processing unit:
Arduino Nano
microcontroller

Discrete Fourier
transform data
analysis [140]

Accuracy: 91% (extra
virgin/virgin);
Accuracy: between 67%
and 77% (extra
virgin/virgin/blend
/pomace/fresh air)

Olive oil quality
assessment

[141]
Sensor array: MQ-3,
TGS822, MQ-136,
MQ-9, TGS813,
MQ-135, TGS2602,
TGS2620;
Sensor processing
unit: N/A

PCA

Total variance of the data
for distilled water
extracts from mint
plants: 95%;
Total variance of the data
for mint essential oil:
89%

Mint essential oil and
mint distilled water
extracts quality
assessment

LDA

Accuracy for the
classification of mint
essential oil: 91.33%;
Accuracy for mint
distilled water extracts:
86.67%

ANNs

Accuracy for the
classification of distilled
water extracts 100%;
Accuracy for the
classification of mint
essential oil 96.7%



Sensors 2025, 25, 4437 17 of 49

Table 5. Cont.

Paper Design Architecture Data Analysis
Techniques

Evaluation and
Performance Metrics Application Area

[142]
Sensor array: MQ-9,
MQ-4, MQ-135,
MQ-8, TGS2620,
MQ-136, TGS813,
TGS822, MQ-3;
Signal proc. unit:
N/A

PCA Accuracy: 98% Identification of essential
oils from herbs and fruits

LDA and Quadratic
Discriminant Analysis

Accuracy: 100%
(essential oil emissions
from herbal
leaves/fruits);
Accuracy: 100% for
Quadratic Discriminant
Analysis and 98.9% for
LDA
(mango/lemon/orange
/mint/tarragon/thyme)

SVM

Accuracy: 100%
(essential oil emissions
from herbal
leaves/fruits);
Accuracy: 98.9%
(mango/lemon/orange
/mint/tarragon/thyme)

[143]

Sensor array:
six different polymeric
gas sensors
(polymeric nanocom-
posites of polyaniline
with multiwalled
carbon nanotubes
and graphene oxide);
Signal processing unit:
N/A

PCA Accuracy: 99.85% Authenticity of clove oil
Interactive Document
Map multivariate
projection techniques

Accuracy: 99.81%

LDA Accuracy: 98.30%

Electronic Nose Systems for Coffee and Tea Quality and Safety

[144]

Sensor array: MQ-7,
MQ-3, MQ-135,
TGS2600, TGS2602,
TGS2610, TGS2611,
TGS2620, DHT22;
Signal processing unit:
N/A

Extreme Gradient
Boosting [145]

Accuracy rates between
82% and 95% (sixteen
classes of coffee)

Authenticity of coffee

SVM
Accuracy rates between
81% and 95% (sixteen
types of coffee)

CNN
Accuracy rates between
86% and 98% (sixteen
types of coffee)

CNN + Long Short-Term
Memory (LSTM) [146]

Accuracy rates between
83% and 98% (sixteen
types of coffee)
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[147]

Sensor array: carbon
nanotube-based
multichannel with
64 interdigital
electrodes;
Sensor processing unit:
N/A

LDA
Accuracy: 97.4%
(three different
coffee aromas)

Authenticity of coffee

[148]

Sensor array: four
sensors (SnO2_bs1,
ZH0504, SnO2 Au_bs2,
SU0303) and two
nanowire sensors
(Sn-NW1, Sn-NW2);
Sensor processing unit:
N/A

PCA N/A (four classes of
roasted coffee beans)

Analysis of different
methods of coffee
roasting

[149]
Sensor array: TGS821,
TGS2444, TGS823,
TGS2600, TGS2602,
TGS2610, TGS826,
TGS2620;
Signal processing unit:
NI DAQ card,
USB-6009

PCA
Accuracy: 95%
(four acidity levels of
coffee drinks)

Coffee drinks quality
assessment

Radial Basis Function
Neural Network [150]

Accuracy: 94.75%
(to predict the scores of
acidity level)

[151]

Sensor array: six sensing
units (nanocomposites
that stem from the
combination of ZnO,
In2O3, and ZnO/In2O3
nanoparticles with
polypyrrole and
poly(styrenesulfonate));
Signal processing unit:
N/A

PCA + Euclidean
distances by
dendrograms

N/A (seventeen classes
of coffee) Authenticity of coffee

[152]
Sensor array: eight
BME688 sensors;
Signal processing unit:
Adafruit Huzzah32
(ESP32) development
board

Random Forest MSE: 0.062 Authenticity of coffee
Stochastic Gradient
Descent [153]

Accuracy: 70.10%
(two classes of coffee)

Adam Optimizer [154] Accuracy: 67.70%
(two classes of coffee)

[155]

Sensor array: TGS832,
TGS823, TGS2600,
TGS2610, TGS2611;
Signal processing unit:
PCI6035E data
acquisition card [156]

Bayesian
classification [157]

Classification error in
percentage 30.91%
(four classes of tea)

Black tea quality
assessment
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Electronic Nose Systems for Diary Quality and Safety

[158] Sensor array: TGS2600,
TGS822, TGS2611,
TGS826, TGS2602,
TGS832, TGS2620;
Signal processing unit:
Arduino
microcontroller

PCA + LDA + SVM Accuracy: 85% Identification of milk
source

PCA + LDA + Logistic
Regression [159] Accuracy: 81.50%

PCA + LDA + Random
Forest Accuracy: 80.50%

Electronic Nose Systems for Alcoholic Beverage Quality and Safety

[160]

Sensor array: MQ-2,
MQ-135, TGS825,
WSP-2110, MP-503,
TGS2602, WSP-1110,
MQ-138, MQ-137,
MQ-136;
Sensor processing unit:
N/A

Convolution
Dot-Product Attention
Mechanism [160],
Residual network
(ResNet50 mode) [161]

Accuracy: 98.47%
(ten production origins
of rice wines)

Identification of the
origins of rice wines

[162]

Sensor array: TGS2600,
TGS2602, TGS2603,
TGS2610, TGS2611,
TGS2620, TGS813,
TGS822;
Sensor processing unit:
N/A

LDA + PCA +
CNN-LSTM

Accuracy: 98%
(whiskey/brandy
/gin/vodka/tequila)

Identification of various
types of spirit samples

[163]

Sensor array: TGS2600,
TGS2603, TGS2610D,
TGS2611C, TGS2620;
Signal processing unit:
N/A

Linear Discriminant

Accuracy: 69.23%
(six brands of whiskey);
Accuracy: 100%
(whiskey regions of
origin)

Authenticity of whiskey

SVM

Accuracy: 82.05%
(six brands of whiskey);
Accuracy: 98.72%
(whiskey regions of
origin)

KNN

Accuracy: 61.54%
(six brands of whiskey);
Accuracy: 92.31%
(whiskey regions of
origin)

Bagged Tree [91]

Accuracy: 74.36%
(six brands of whiskey);
Accuracy: 94.87%
(whiskey regions of
origin)
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Subspace
Discriminant [164]

Accuracy: 70.51%
(six brands of whiskey);
Accuracy: 100%
(whiskey regions of
origin)

[165]

Sensor array: TGS2600,
TGS2602, TGS2603,
TGS2610, TGS2611,
TGS2620, TGS813,
TGS822, DHT22;
Signal processing unit:
N/A;

CNN-LSTM Accuracy: 93%
(three whiskey types)

Authentication of
whiskey

CNN
Accuracy: 91%
(three different types of
whiskey)

LSTM
Accuracy: 91%
(three different types of
whiskey)

Recurrent Neural
Networks [166]

Accuracy: 89%
(three whiskey types)

[167]

Sensor array: eight MOS
sensors with
two different types of
copper oxide
heterojunctions,
ZnO–CuO and
NiO–CuO;
Signal processing unit:
N/A

Hierarchical Clustering
Analysis [168]

Euclidean distance: 0.5
(four samples of Chinese
Jing Wine)

Identification of the same
liquors manufactured in
different years

[169]

Sensor array: TGS825,
TGS821, TGS826,
TGS822, TGS842,
TGS813, TGS2610,
TGS2201;
Signal processing unit:
N/A

PCA + Signal-to-Noise
Ratio

First two principal
components captured
92.47% of data variance
(thirteen varieties of
Chinese liquor)

Identification of several
types of liquors

[170]
Sensor array: MQ-3,
MQ-6, MQ-9, MQ-135,
MQ-136, MQ-137,
MQ-138, MQ-139,
SHT15 [171];
Signal processing unit:
NI DAQ card,
USB-6009

PCA + Multi-Layer
Perceptron (MLP) [172]

Accuracy: 100%
(three distinct local Thai
spirits)

Identification of local
Thai craft spirits

PCA + k-Means
Accuracy: 72.23%
(three distinct local Thai
spirits)

[173]

Sensor array: MQ-3,
MQ-4, MQ-7, MQ-8,
MQ-135, MQ-136,
MQ-137, MQ-138,
MG811 [174],
AM2320 [175];
Signal processing unit:
microcontroller with an
onboard ADC

ANNs

Correlation coefficient:
0.97 (to predict
seventeen volatile
aromatic compounds)

Beer quality assessment
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Lessons Learned

Based on the detailed analysis of electronic nose-type systems for food quality and
safety that we performed above in Table 5, we found that most of these systems are home-
made, low-cost, using commercial MOS sensors and simple microcontroller boards in the
Arduino and ESP32 range (Arduino Uno R3, Arduino Mega 2560, Arduino Uno, ATmega8,
Arduino Due, PIC, PIC18F45K22, Arduino Nano, Gizduino, ESP32, and the Node MCU
IoT platform) or single-board computers such as Raspberry Pi (Raspberry Pi 3 and 4,
S3C6410-based Linux platform), or data acquisition cards like NI DAQ card—USB-6009
and PCI6035E, available on the market. Table 6 provides a complete list of all the gas
sensors used in e-nose solutions from Table 5 along with their key characteristics. The
characteristics presented are important because sensor range defines e-nose sensitivity,
and power and response time are critical for portable or multi-sensor systems. For ex-
ample, heater-based sensors need long startup or preheat times, which limits portability.
Tables 5 and 6 offer researchers a comprehensive overview of the most commonly used
sensors in the development of the e-nose system, their corresponding application areas,
and the algorithms that achieve good performance levels. These tables provide practical
insights and recommendations that will significantly reduce the efforts of designers and
implementors required for sensor selection. Creating such selection tables is a crucial
preliminary step in the sensor selection process.

For the classification of the acquired data, Table 5 reveals that the main techniques pre-
sented in Table 2 (PCA, LDA, ANNs, SVM, KNN) and variations of those (i.e., CNN, PNN,
LSTM, MLP, SVR) are the most used. Current trends focus on implementing machine learn-
ing technologies, such as CNN and LSTM, and general AI solutions, because processing
platforms have become more accessible, affordable, and powerful. Although these solutions
involving AI methods and algorithms are not novel, researchers can now truly benefit
from their use, thanks to the emergence of cost-effective and high-performance hardware
platforms. The use of other models, such as Linear Regression, k-Means, Random Forest,
Stochastic Gradient Descent, Naïve Bayes, Fuzzy logic, Discrete Fourier Transformation,
Quadratic Discriminant Analysis, and Extreme Gradient Boosting, also yielded results with
an accuracy of over 80%, as reported by the authors. Some research works combined PCA
with other techniques (i.e., SVN, LDA, PNN, KNN, k-Means) for the following reasons:
(a) it reduces the number of features of the acquired data while retaining the most relevant
information; (b) it helps filter out sensor noise and irrelevant variations in the data; (c) it
pre-processes the data, which results in faster training times, better generalization, higher
accuracy, especially when the raw sensor data are noisy or redundant; and (d) it reduces
data to two or three dimensions, guiding researchers in the selection of the appropriate
pattern recognition technique. In these cases, the performance metrics yield highly encour-
aging results. We can conclude that PCA acts as a smart pre-processing step that makes the
data more manageable and informative for learning tasks.

Most proposed e-nose solutions lack support for the user-friendly visualization of the
odor classification and the identification of the results. It is important to ensure that the
analysis results are effectively communicated to end users in real time through software
applications and easy-to-use graphical user interfaces.
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Table 6. Summary of gas sensors used in e-nose systems and their key features (response time—the time a sensor takes to reach a certain percentage of its final
output signal after exposure to a target gas; resume time—the time the sensor takes to return to its baseline signal after the removal of the target gas).

# Sensor Target Gas Detection Range [ppm] Response and Resume
Time [s] Heater Consumption [mW] Preheat Time [min/h/day]

1 BME688

IAQ, bVOC, eCO2 bVOC:
(5 ppm Ethane, 10 ppm
Isoprene/2-methyl-1,3
Butadiene, 10 ppm Ethanol,
50 ppm Acetone, 15 ppm
Carbon monoxide)

0–500 (IAQ), bVOC, CO2
P: 300–100 hPa,
H: 0–100%
T: −40–85 °C

1/3/300 0.16–21.6 30 min

2 MQ-2 Flammable gas, smoke 300–10,000 ppm (Flammable
gas) 60 950 48 h

3 MQ-3 Alcohol, Benzine 0.05–10 mg/L Alcohol - 750 24 h
4 MQ-4 Methane 300–10,000 ppm (CH4) 60 950 48 h

5 MQ-5 Liquefied petroleum gas,
Methane 300–10,000 ppm (CH4, C3H8) 60 950 48 h

6 MQ-6 Liquefied petroleum gas 300–10,000 ppm (Propane) 60 950 48 h
7 MQ-7 Carbon monoxide 20–2000 ppm (CO) 60 350 48 h
8 MQ-8 Hydrogen gas 100–1000 ppm (H2 gas) 60 950 48 h

9 MQ-9

Carbon monoxide and
Combustible gas (Methane
and Liquefied
petroleum gas)

10–1000 ppm (CO)
100–10,000 ppm
(Combustible gas)

60 350 48 h

10 MQ-131 Ozone 10–1000 ppm (O3) 110 950 48 h

11 MQ-135 Ammonia gas, Sulfide,
Benzene series steam

10–1000 ppm (Ammonia gas,
Toluene, Hydrogen, smoke) 60 950 48 h

12 MQ-136 Hydrogen sulfide gas 1–200 ppm (H2S gas) 60 950 48 h
13 MQ-137 Ammonia gas 5–500 ppm (NH3 gas) 60 900 48 h

14 MQ-138 Toluene, acetone, alcohol,
hydrogen 5–500 ppm 60 900 48 h

15 MQ-139 Freon 10–1000 ppm 180–300 900 48 h
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Table 6. Cont.

# Sensor Target Gas Detection Range [ppm] Response and Resume
Time [s] Heater Consumption [mW] Preheat Time [min/h/Day]

16 ZE03-NH3
CO, O2, NH3, H2S, NO2, O3,
SO2, CL2, HF

0–1000 ppm (CO), 0–25% vol
(O2), 0–100 ppm (NH3),
0–100 ppm (H2S),
0–20 ppm (NO2),
0–10 ppm (HF),
0–20 ppm (SO2),
0–10 ppm (CL2),
0–20 ppm (O3)

15–150 20 -

17 ZE03-C2H4

CO, O2, NH3, H2S, NO2, O3,
SO2, CL2, HF, H2, PH3, HCL,
C2H4

- 15–150 20 -

18 MICS-6814

Carbon monoxide, Nitrogen
dioxide, Ethanol, Hydrogen,
Ammonia, Methane,
Propane, Iso-butane

1–1000 ppm (CO),
0.05–10 ppm (NO2),
10–500 ppm (C2H5OH),
1–1000 ppm (H2),
1–500 ppm (NH3),
CH4 > 1000 ppm,
C3H8 > 1000 ppm,
C4H10 > 1000 ppm

- 43–76 -

19 TGS2201 Diesel exhaust, Gasoline
exhaust

0.1–10 ppm (NO, NO2)
10–1000 ppm (CO, H2, HC) - 505 7 d

20 TGS2444 Ammonia gas, Hydrogen
sulfide gas, Ethanol

10–300 ppm of NH3, 10–100
ppm of H2S, 300–1000 ppm
of Ethanol

60–180 56 48 h

21 TGS2600 Hydrogen, Ethanol 1–30 ppm of H2 - 210 7 d

22 TGS2602 VOCs, Ammonia, Hydrogen
sulfide gas 1–30 ppm of EtOH - 280 7 d

23 TGS2603 Trimethylamine, Methyl
mercaptan 1–30 ppm of EtOH - 240 96 h

24 TGS2610 Butane, Liquefied petroleum
gas 1–25 % LEL - 280 7 d
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Table 6. Cont.

# Sensor Target Gas Detection Range [ppm] Response and Resume
Time [s] Heater Consumption [mW] Preheat Time [min/h/Day]

25 TGS2611 Methane, Natural gas 500–10,000 ppm - 280 7 d

26 TGS2612 Methane, Propane,
Iso-butane 1–25 % LEL of each gas - 280 7 d

27 TGS2620 Alcohol, Organic solvent
vapors 50–5000 ppm EtOH - 210 7 d

28 TGS800 General air contaminants 1–30 ppm - 660 -
29 TGS813 Combustible gases 500–10,000 ppm of Methane - 835 -
30 TGS821 Hydrogen 30–1000 ppm of H2 - 660 -
31 TGS822/823 Alcohol, Organic solvents 50–5000 ppm of Ethanol - 660 -
32 TGS825 Hydrogen sulfide gas 5–100 ppm of (H2) - 660 -
33 TGS826 Ammonia gas 30–300 ppm of NH3 - 835 -
34 TGS832 R-134a 100–3000 ppm of R-134a - 835 -
35 TGS842 Methane natural gas 500–10,000 ppm of CH4 - 835 -

36 TGS880 Fumes from food
(alcohol, odor)

10–1000 ppm (Air and
Ethanol) - 835 -

37 WSP1110
Obsolete NO2 sensor 0.1–10 ppm NO2 - - -

38 WSP2110 Toluene, Methanal, Benzene,
Alcohol, Acetone 1–50 ppm NO2 70 300 120 h

39 MP503 Alcohol, Smoke, Iso-butane,
Methanal 10–1000 ppm (Alcohol) 60 300 48 h

40 MG811 Carbon dioxide 350–10,000 ppm (CO2) 20 1200 -
Note: No documentation was found for the MQ-1, HGS1000, HGS1001, HGS1002, and HGS1007 sensors; therefore, they are not included in this table.
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Our in-depth analysis of the research studies also reveals that the developed e-nose
systems do not target the achievement of high-performance measurement prototypes or
products; rather, the authors focused on concept validation with their prototype systems.
This is supported by the following conclusions:

• Cost: The sensors used in the experiments belong to the cheap components’ class,
usually included in gas measurement systems, where their main feature is the de-
tection of the presence of a certain gas component. Another characteristic of such
systems is the low manufacturing cost. The documentation that comes with the sen-
sors used is brief, containing little relevant information, omitting aspects like the
manufacturer-recommended schematics, calibration and compensation methods de-
pending on temperature and relative humidity values, or formulas for converting the
voltage or resistance measured by the microcontroller back into the actual physical
quantity measured by the sensor. In many cases, the datasheets do not include im-
portant characteristics such as precision, accuracy, repeatability, stability over time,
or startup periods. Most sensors used are analog, and they do not integrate calibra-
tion circuits, drift, compensation or control mechanisms, or an ADC within the same
package. As a result, their overall measurement performance is typically poor, and
they are further affected by the required external electronics. The BME688 [125] sensor
used in [124,152] stands out in a positive way because it includes important circuitry
besides the sensing element, which supports advanced functions such as filtering,
signal conditioning, the ADC, the compensation table and algorithm, and digital com-
munication with the processing unit, ESP32. The BME688 development kit uses eight
sensors instead of one to form a sensor array, which enhances detection performance,
especially for low-cost setups. Though calibrated, sensors differ slightly, and tracking
signal trends over time across multiple sensors improve reliability. Additionally, free
gas flow causes variations in individual sensor responses before steady state, making
arrays beneficial.

• Power usage: The energy consumption required by the sensors used is high, and they
are suitable for integration with systems powered permanently from the main power
outlet. Sensors with heaters that are common in most studies have long response
times, between 10 and 300 s, and operate at 200–400 °C. This leads to high power
consumption unsuitable for portable devices and faster aging that requires frequent
recalibrations. The recommended preheating time, or sensor warm-up time, until the
first correct measurements can be extensively long, up to 2 to 7 days in some cases. The
power consumed during measurement ranges from 0.3 to 1.0 W, and the continuous
operation of the heating element in some sensors makes them unsuitable for use in
portable electronic nose systems.

• Data collection: The data acquisition platforms are not designed for instrumentation
systems. Most of the proposed solutions use low-resolution ADCs (10- or 12-bit),
typically with a 0 to 5 V input range. This leads to an effective resolution per bit of 5 to
10 mV. Temperature and relative humidity compensation are generally based on low-
accuracy T and RH sensors (±1 °C for temperature and ±4% for relative humidity), with
a few exceptions. In platforms based on ESP32, measurement performance in terms of
used digits is further limited by the built-in ADC, which typically offers an effective
resolution of only 8 bits. Some proposed electronic nose systems utilize industrial-
grade measurement platforms (i.e., PCI6035E, AD7606) and compensation sensors
(sensors helping in adjusting the measurement depending on ambient parameters
such as temperature, humidity, or pressure) for temperature and relative humidity
(i.e., SHT15), which outperform those commonly used in standard gas detectors.
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• Portability: Very few papers focus on low-power or portable systems. However, the
question of whether a measurement system can be powered from the main outlet is
a valid one. In this case, what are the time and logistical efforts required to make
the system operational at a different location? For example, when considering the
BME688 sensor, a system using it requires 30 min to reach maximum accuracy after
power cycling. Other manufacturers do not specify this time requirement, but in some
cases, it could require days.

• Data processing: Generally, the accuracy of measurement data is verified through thousands
of hours of operation and repeated measurements, ideally conducted on multiple similar
devices operating in parallel. Some past research solutions [103,115,119,138,141,163] used
professional techniques (i.e., Gas Chromatography–Mass Spectrometry (GC–MS) [176])
to compare their experimental results with reference ones. In all the papers that we
reviewed, the number of samples collected by the sensor arrays and used by the
machine learning algorithms is rather small (<300 samples). In these conditions,
expecting authors to validate their work with equipment that has been running for
a full year is not feasible. This raises questions regarding the performance metrics
obtained. To validate the results obtained, standard test/evaluation scenarios should
be run, not just particular test sets created by the authors of the papers.

4.3. Food Analysis Based on Previously Developed/Commercial Electronic Nose Systems

Thirty-nine percent of the publications in the final set of selected publications present
food and beverage quality assessment and quality monitoring solutions that integrate com-
mercial e-noses or electronic nose systems developed by other research labs. The research
works in this taxonomy category perform some sort data acquisition based on these devices,
followed by, in the majority of cases, different data processing and prediction algorithms.

4.3.1. Commercial Electronic Nose Systems

Our analysis found that the most used commercial e-noses are PEN3 [177] from
Airsense Analytics Inc., Fox 3000 [178] from Alpha MOS, Fox 4000 [179] from Alpha MOS,
FOODsniffer [180], NeOse Pro [181] from Aryballe Technologies, and Cyranose@ 320 [182]
produced by Sensigent. Table 7 summarizes their main characteristics, along with a few
promising papers that employed them, considering aspects such as data analysis techniques,
evaluation and performance metrics, and application domains.

Table 7. Summary of commercial electronic nose systems for food quality and safety.

Commercial E-Nose Paper Data Analysis
Techniques

Evaluation and
Performance Metrics Application Area

PEN3:
A sensor array of
ten different
metal oxides
single thick
film sensors [177]

[183] Recurrent Criss-Cross
Attention Network [184] Accuracy: 98% Peanuts quality

assessment

[185]

Statistical analysis on
data collected by PEN3
(weight loss
measurements and
firmness analysis also
performed)

Prove that
ilmenite-grafted
graphene oxide coating
reduces postharvest
losses

Postharvest preservation
of fruits (bananas)

[186]

PCA (e-nose and
Headspace-Gas
Chromatography-Ion
Mobility Spectrometry)

Accuracy: 100%
(genuine/fake)

Amomi fructus
authenticity
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Table 7. Cont.

Commercial E-Nose Paper Data Analysis
Techniques

Evaluation and
Performance Metrics Application Area

Partial Least
Squares-Discriminant
Analysis (PLS-DA) [187]
(e-nose and
Headspace-Gas
Chromatography-Ion
Mobility Spectrometry)

Accuracy: 97.96% (origin
identification)

Amomi fructus origin
identification

[188] PCA + ANNs Accuracy: 99% Milk safety assessment

[189]

Solid-Phase
Microextraction [190]
coupled with GC–MS
and e-nose analysis

Not discussed

Development of
structured lipids with
enhanced flavor profiles
for dairy products and
functional food

[191]

Dung Beetle Optimizer
algorithm [192]
combined with
10 different machine
learning methods

Coefficient of
determination > 0.895

Prediction of the
electronic sensory
characteristics of
fermented milk

[193]

Proposed data
augmentation model
(e-nose + e-tongue) +
CNN

Accuracy: 95.34%
(four types of mixed
solution);
Accuracy: 97.78%
(five brands of beer);
Accuracy: 97.37%
(five kinds of apple)

Quality of different food

Fox 3000:
Two sensor chambers
equipped with twelve
MOS sensors [178]

[178] Random Forest Accuracy: 95.30% Mandarin orange quality
assessment

Fox 4000:
An injection
system, sensor
chambers with
eighteen MOS
sensors, a mass
flow controller,
and a micro-
controller
acquisition
board [179]

[194] PCA

Discrimination
index: 93
(seven batches of
hydrolysate)

Quality of baked goods
(effects of enzymatic
hydrolysis on soy
protein concentrate)

[195] PCA

PCA1: 94.54%,
PCA2: 3.38% of the total
variance (untreated
sample/pasteurized
sample/treated
sample/sterilized
sample in 0, 30 and
60 days of storage)

Shelf life of chicken
products quality
assessment

[196] PCA

Discrimination
index: 90
(eight types of plum jam
samples)

Evaluation of the
characteristics of
sugar-free plum jams

[197]

PCA + CA +
Partial Least Squares
regression [198] (GC–MS
and e-nose data)

Correlation
coefficients > 0.98
(for 14 characteristic
aroma-active
compounds)

Mitten crab quality
assessment



Sensors 2025, 25, 4437 28 of 49

Table 7. Cont.

Commercial E-Nose Paper Data Analysis
Techniques

Evaluation and
Performance Metrics Application Area

FOODsniffer [180]
[199]

E-nose data analysis
compared with
microbiological and
GC–MS analyses

FOODsniffer can
anticipate the
unacceptability
conditions of salmon (at
22 °C, 10% of samples are
‘Not satisfactory’ when
FOODSniffer is ‘Green’)

Salmon fillet and burger
quality and safety
assessment

[200]

E-nose data analysis
(PCA) compared with
physicochemical
measurements of meat
quality

PC1–71.13%,
PC2: 83.70% of total
variance

Meat quality assessment

NeOse Pro:
A gold-layer-
based
optoelectronic
sensor array
featuring
sixty-three
non-specific
peptides [181]

[201]

PCA + Gas
Chromatography with
Ion Mobility
Spectrometry (GC–IMS)

Completely separate
one sample

Plant-based beverage
quality assessment

PCA + e-nose Completely separate
seven samples

LDA + GC–IMS Accuracy between 15.4%
and 100%

LDA + e-nose Accuracy between 96.2%
and 100%

Cyranose@ 320:
An array of thirty-two
nanocomposite
sensors [182]

[202] Proposed e-nose pattern
recognition algorithm

Accuracy: 80% at room
temperature

Identification of
Terfezia arenaria truffle

4.3.2. Electronic Noses Developed by Academic Research Groups

Our analysis reveals that several academic research groups developed electronic noses
that other researchers later employed them in their own studies. For instance, research
groups from the University of Rome Tor Vergata developed LibraNose [203] and also
other prototypes [204,205], very similar to LibraNose. Researchers from the Industrial
Engineering School of the University of Extremadura, Spain, designed a low-cost, high-
accurate electronic nose [206], and those from the Institute of Agrophysics PAS in Lublin,
Poland, created the Agrinose [207] system. In the Department of Biosystems Engineering,
Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran, researchers designed an
e-nose [208] that has been successfully used in several studies regarding garlic quality
assessment. Table 8 summarizes the main characteristics of these e-noses, along with
a few promising papers that employed them, considering aspects such as data analysis
techniques, evaluation and performance metrics, and application domains.
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Table 8. Summary of electronic noses developed by academic research groups for food quality
and safety.

E-Nose Paper Data Analysis
Techniques

Evaluation and
Performance Metrics Application Area

LibraNose:
An array of
eight QCM
non-selective
sensors coated
with different
polypyrrole
derivatives—
University of
Rome Tor
Vergata, Italy [203]

[209]
E-nose data analysis
(PCA + Random Forest
regression)

Accuracy: 92.8%
(for predictions of
B. thermosphacta)

Meat quality assessment

High Performance
Liquid Chromatography
+ Random Forest
regression

Accuracy: 100%
(for predictions of
Lactobacilli)

GC–MS + Random
Forest regression

Accuracy: 93.9%
(for predictions of
Enterobacteriaceae)

GC–MS + kNN-R
Accuracy: 96.0%
(for predictions of
Pseudomonads)

[210]

PCA + Proposed data
model based on
Adaptive Fuzzy Logic
System

Accuracy: 94.28%
(fresh/semi-
fresh/spoiled)

Monitoring of meat
spoiling during storage

[211]

PCA + Proposed
Multi-Input
Multi-Output
Clustering-based Fuzzy
Wavelet Neural
Network model

Accuracy: 95.71%
(fresh/semi-
fresh/spoiled);
RMSE: 0.2969 to predict
the microbial load on
meat surface

Meat quality assessment

[212]

Proposed model based
on ensemble-based
(Bagging and Boosting)
SVM

Accuracy: 84.1%
(fresh/semi-
fresh/spoiled)

Meat quality assessment

Proposed model based
on ensemble-based
(Bagging and Boosting)
SVM-regression

Accuracy: 85% to predict
bacterial species counts

E-nose with
an array of
twelve QCM
sensors—
University of
Rome Tor
Vergata, Italy [204]

[204] PLS-DA

94% of the original data’s
variation can be
represented in a
reduced-dimensional
space;
Accuracy: 100%
(five different classes of
sparkling wines)

Identification of rosé
sparkling wines

[213] PLS-DA

85% of the original data’s
variation can be
represented in a
reduced-dimensional
space;
Accuracy between 60%
and 100% for the
first stages of
Botrytis cinerea infection
(1, 2, 3 days)

Identification of noble
rot (a fungus also known
as Botrytis cinerea) in
postharvest wine grapes
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Table 8. Cont.

E-Nose Paper Data Analysis
Techniques

Evaluation and
Performance Metrics Application Area

E-nose with
an array of
eight QCM
sensors—University of
Rome Tor Vergata,
Italy [205]

[205] PCA + LDA

Accuracy: 71.4%
(Aspergillus niger/
Aspergillus fumigatus/
Aspergillus flavus)

Identification of
Aspergillus Species

E-nose with
four gas sensors
(BME680 [214],
SGP30 [215],
CCS811 [216],
iAQ-Core [217])
—Industrial
Engineering
School of the
University of
Extremadura, Spain [206]

[206]
E-nose data analysis
(PCA + PLS-DA)
compared with GC–MS

PC1–83.5%, PC2–12.3%
of the total variance;
Accuracy: 100%
(six classes of roasted
coffee beans exposed to
different heat treatment
conditions)

Roasted coffee quality
assessment

[218] PCA + PLS-DA

Whole roasted
almonds–R2: 0.89 for
acrylamide and furfural,
R2: 0.83 for
hydroxymethylfurfural
Ground roasted
almonds–R2: 0.99 for
acrylamide, R2: 0.98 for
hydroxymethylfurfural,
R2: 0.88 for furfural

Prediction of
contaminants in roasted
almonds

Agrinose:
An array of
eight MOS
sensors
(AS-MLV-P2 [219],
TGS2602,
TGS2600,
TGS2603,
TGS2610,
TGS2611,
TGS8100 [220],
TGS2620)
—Institute of
Agrophysics
IA PAS, Poland [207]

[221]

Proposed model based
on a three-parameter
method based on the
impregnation time,
cleaning time, and
maximum response of
chemically sensing
sensors + PCA compared
with GC–MS

PC1 + PC2 describe
72.64% of the total
variance and enable clear
separation of different
sample classes

Assessment of the
suitability of bread for
consumption after
storage

[222]

Proposed model based
on a three-parameter
method based on the
impregnation time,
cleaning time, and
maximum response of
chemically sensing
sensors + PCA compared
with Fourier Transform
Infrared
Spectroscopy [223] and
GC–MS

PC1 + PC2 describe
79.25% of the total
variance and enable clear
separation of different
sample classes

Identification of
rapeseed spoilage
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Table 8. Cont.

E-Nose Paper Data Analysis
Techniques

Evaluation and
Performance Metrics Application Area

E-nose with
nine MOS
sensors (MQ-2,
MQ-3, MQ-4,
MQ-5, MQ-6,
MQ-7, MQ-8,
MQ-9, MQ-135)
—Department of
Biosystems
Engineering,
Bu-Ali Sina
University, Iran [208]

[224] PCA

Included 55%, 75%, 47%,
and 53% of data for
unprocessed
whole/dried
slices/powder/tablet

Garlic quality
assessment

LDA

Accuracy: 90%, 93.33%,
88.89%, 60%
(unprocessed
whole/dried
slices/powder/tablet)

SVM

Accuracy: 72.22%,
80.00%, 75.55%, 40%
(unprocessed
whole/dried
slices/powder/tablet)

Backpropagation Neural
Network [225]

Accuracy: 100%, 97.80%,
92.2%, 77.78%
(unprocessed
whole/dried
slices/powder/tablet)

Lessons Learned

Numerous research studies use commercial electronic nose instruments, like those
mentioned in Table 7, because of their user-friendly operation and dependable performance.
These instruments allow researchers to save time, ensure consistent reliability, and focus
on more advanced research questions. Additionally, commercial e-noses facilitate the
generation of reproducible and comparable results, all without the need to navigate the
challenges of developing custom hardware.

Our analysis highlights several ways in which the research community adopted
commercial electronic noses, as follows:

• To apply well-known pattern recognition techniques to assess the quality and safety of different
types of food: Studies such as [178,188,194–196] used PEN3, Fox 3000, and Fox 4000
commercial electronic noses to apply algorithms such as PCA, Random Forest, and
ANNs to evaluate the quality of various food categories (meat, fruits, jams, milk).
In [186,189,197], the researchers applied well-known pattern recognition techniques
(PCA, PLS-DA, Partial Least Squares regression) to both e-nose data (PEN3, Fox
4000) and chromatography analysis results (GC–MS), leveraging the complementary
strengths of these methods in chemical analysis and pattern recognition.

• To develop novel models or algorithms for odor identification and classification: Studies
such as [183,191,193,202] used data collected from commercial electronic nose de-
vices (PEN3, Cyranose@ 320) to develop novel data models for the identification and
classification of odors, demonstrating strong performance.

• To confirm the ability of commercial e-noses to recognize and classify aromas: Studies such
as [199,200] proved that the FOODsniffer e-nose can accurately classify meat based on
its data analysis, with results validated against GC–MS analysis and physicochemical
measurements. The authors of [201] validated NeOse Pro to evaluate the quality of the
plant-based beverage by applying PCA and LDA to the e-nose data and comparing
the results with those obtained using the same algorithms on GC–MS data.
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The previous classification also applies to electronic noses developed by research
groups. Table 8 shows that the e-nose designed within the Department of Biosystems Engi-
neering, Bu-Ali Sina University, can successfully assess the quality of garlic by applying
well-known pattern recognition techniques (PCA, LDA, SMV, Backpropagation Neural
Network) [224], and the e-noses developed by the University of Rome Tor Vergata work
well with PLS-DA, PCA, and LDA to identify bacteria in food and beverage [204,205,213].
In [206,209,218], researchers applied techniques such as PCA, Random Forest regression,
PLS-DA, and Partial Least Squares to data collected from LibraNose and the e-nose de-
veloped by the Industrial Engineering School of the University of Extremadura to assess
the quality of meat, roasted coffee, and almonds. The authors of these studies validated
the obtained results using GC–MS and High Performance Liquid Chromatography. Stud-
ies [210–212] used LibraNose data in the development of novel models or algorithms for
meat quality assessment, while other studies [221,222] used Agrinose to implement models
for the assessment of the suitability of bread for consumption after storage and to identify
rapeseed spoilage. These last two studies validated their results by comparing them with
those obtained from GC–MS and Fourier Transform Infrared Spectroscopy analysis.

During our analysis, we identified new sensors integrated into e-noses developed by
research groups. Table 9 completes the list of sensors presented in Table 6 by including the
new ones mentioned in Section 4.3.2 of this review.

An in-depth analysis of the research studies reveals that these instruments can accu-
rately detect certain types of food, but this does not necessarily imply they are suitable
for detecting all food classes. The selection of such instruments should not be arbitrary;
the selected sensors must be carefully evaluated based on the primary VOCs present in
the target sample. Comparing the results obtained from using e-nose data and various
algorithms with those from chromatography analyses, which are highly accurate in the
identification of VOCs in food, serves to validate the findings. Chromatography provides
precise, specific chemical data, but is time-consuming, expensive, and requires skilled oper-
ators. E-noses may be more advantageous over GC–MS in distinguishing the integral aroma
profile, although they cannot identify the explicit VOCs of different samples. Combining
e-noses data analysis with complementary technologies analysis, such as human sensory
evaluation, GC–MS, or e-tongue to assess food quality can achieve high detection accuracy.
However, this approach often involves significant time due to data fusion processes and
incurs substantial costs.

Similar to the approaches analyzed in the first category of our taxonomy, those in the
second category also focus on concept validation conducted at the laboratory level.
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Table 9. Summary of gas sensors used in e-nose systems and their key features.

# Sensor Target Gas Detection Range [ppm] Response and Resume
Time [s]

Heater Consumption
[mW]

Preheat Time
[min/h/Day]

1 BME688

IAQ, bVOC, eCO2 bVOC:
(5 ppm Ethane, 10 ppm
Isoprene/2-methyl-1,3
Butadiene, 10 ppm
Ethanol, 50 ppm Acetone,
15 ppm Carbon
monoxide)

0–500 (IAQ), bVOC, CO2
P: 300–1100 hPa,
H: 0–100%
T: −40–85°C

1/3/300 0.16–21.6 30 min

2 SGP30 End of life VOC, eCO2, Ethanol,
Hydrogen sulfide gas

0–60,000 ppb (VOC),
400–60,000 ppm (eCO2)
0– 1000 ppm (Ethanol,
H2S)

1 86.4 24 h

3 CCS811 TVOC, eCO2
0–1187 ppb (TVOC),
400–8192 ppm (eCO2) 0.25/1/10/60 1.2–46 48 h

4 iAQ-Core Obsolete eCO2, TVOC 450–2000 ppm (eCO2),
125–600 ppb (TVOC ) 1/11 9–69 -

5 AS-MLV-P2 Obsolete CO, Butane, Methane,
Ethanol, Hydrogen

30–500 ppm (CO),
15–150 ppm (Butane),
250–4500 ppm (CH4),
10–200 ppm (Ethanol),
25–500 ppm (H)

1/10 50 5 d

6 TGS8100 Methane, Iso-butane, CO,
Hydrogen, Ethanol

1–100 ppm,
1–30 ppm (H2) - 15 >1 h
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4.4. Gas Sensors for Electronic Nose Systems

In the final set of selected publications, we also found several research efforts that
focus on the development of new gas sensors for the food industry. Table 10 summarizes
the key results from the selected articles.

Table 10. Summary of new gas sensors for the food industry.

Reference and Sensor
Type/Technology

Target Compounds/
Application Data Analysis Techniques Key Features/Results

[226]: Silicon NanoWires +
multi-walled carbon
nanotube

Essential oils, alcoholic
beverages, general food PCA

Fast response time
(20–30 s), high selectivity,
dual surface, and chemical
modification

[227]: Graphene junctions Aflatoxin B1 N/A
1.2 V bias yields >3 µA
current change; suitable for
rapid e-nose integration

[228]: Plasmonic arrays +
chemometrics + machine
learning

Multiple VOCs in food PCA + LDA

Uses Surface-Enhanced
Raman Spectroscopy,
mimics animal olfaction;
machine learning enables
multi-analyte detection

[229]: Memristor-based
in-memory computing +
MOS sensor array

Various gases (15 sensors) CNN

94% classification accuracy;
20.2 mW power; fast
response time (<0.4 ms
inference time); compact
processing scheme

[230]: Graphene + Metal
Phthalocyanines

Ammonia gas, interfering
gases PCA

5-sensor array (Co-Pc,
Ni-Pc, Zn-Pc, Fe-Pc,
pristine); promising for
food quality monitoring

[231]: Film Bulk Acoustic
Resonator sensors

General gases; example:
banana freshness

Real-time signal processing
and pre-processing +
Discriminative analysis

Miniaturized portable
e-nose; 6–8× more sensitive
than polymer-coated Film
Bulk Acoustic Resonator;
drift-compensated

[232]: Colorimetric Fe(II)
complex Ammonia gas PCA + Hierarchical cluster

analysis, SVM

Detects 105 ppb at room
temp; reusable; no external
energy needed

[233]: CNT + olfactory
receptor (ODR-10)

Diacetyl in alcoholic
beverages

Sensitivity and selectivity
analysis

Detection limit of 10 fM;
better than fluorescence
assays and GC–IMS in
classification

Lessons Learned

Recent advancements in e-nose technologies demonstrate that sensor performance
can be significantly improved through material innovation and system integration.

Surface and chemical modifications, such as those applied to Silicon NanoWires or
graphene, enhance sensitivity and selectivity, which is critical for detecting specific analyses
in complex environments. The use of advanced materials like graphene and graphene with
Metal Phthalocyanines enables precise gas discrimination, expanding the applicability of
e-noses in food quality and safety.
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Bio-inspired approaches, particularly those mimicking the diversity of biological ol-
factory systems, show strong potential when combined with AI and machine learning
for analyzing multi-dimensional VOCs data. Moreover, the integration of e-nose systems
with compact, low-power computing architectures, such as memristor-based accelera-
tors, addresses challenges in energy efficiency and real-time data processing, essential for
portable devices.

Efforts toward miniaturization, including the use of Film Bulk Acoustic Resonator
sensors and reference drift compensation, have made portable e-noses more viable for field
deployment. Colorimetric and bioelectronic sensor innovations, leveraging either chemical
complexes or olfactory receptors, offer energy-independent or ultra-sensitive detection,
pushing the boundaries of low-resource and high-precision sensing.

These developments show that future e-nose systems will increasingly rely on the
synergy of novel materials, bio-inspired sensing strategies, smart signal processing, and
system-level integration to meet the demands of next-generation applications in food
quality and safety assessment.

4.5. Food-Related Datasets and Algorithms/Techniques for Pattern Recognition Used on Them

Several publications in the final collection of articles emphasize the use of available
food-related databases, which various algorithms/techniques for pattern recognition used.
Table 11 summarizes the e-nose datasets and the related studies that utilized them, as well
as the methods and performance metrics reported.

Table 11. Summary of datasets used in e-nose research for food quality and safety.

Dataset Description Paper Data Analysis Techniques Evaluation and
Performance Metrics

[234,235]

2220 sensor signal re-
sponses collected from
twelve cuts of beef
samples in four differ-
ent degrees of fresh-
ness using eleven gas
sensors

[236] Proposed model based on
1D-CNN

Accuracy: 97.22%
(excellent/good/
acceptable/spoiled)

[237] ANNs
Accuracy: 99.9%
(excellent/good/
acceptable/spoiled)

Linear Regression
Accuracy: 98.9%
(excellent/good/
acceptable/spoiled))

KNN
Accuracy: 98.8%
(excellent/good/
acceptable/spoiled)

[238] Proposed MLP model on Field
Programmable Gate Array

Accuracy: 92.72%
(excellent/good/
acceptable/spoiled)

[239]
Proposed approach based on
Single Plurality Voting System
model + Decision Tree

Accuracy: 91.13%
(excellent/good/
acceptable/spoiled)

Proposed approach based on
Single Plurality Voting System
model + KNN

Accuracy: 88.69%
(excellent/good/
acceptable/spoiled)

Proposed approach based on
Single Plurality Voting System
model + LDA

Accuracy: 80.73%
(excellent/good/
acceptable/spoiled)
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Table 11. Cont.

Dataset Description Paper Data Analysis Techniques Evaluation and
Performance Metrics

[240]

420 samples for seven
different mixtures of beef
and pork collected from
eight gas sensors

[241]

Proposed model based on a
conventional Deep Extreme
Learning Machine with an
autoencoder for feature
learning

Accuracy: 99.85%
(seven combination
mixtures of meat)

Proposed model based on
SVM with a Radial Basis
Function kernel

Accuracy: 93.48%
(seven combination
mixtures of meat)

Proposed model based on a
conventional Deep Extreme
Learning Machine with PCA
for feature learning

Accuracy: 99.97%
(seven combination
mixtures of meat)

Proposed model based on
PCA + SVM with a Radial
Basis Function kernel

Accuracy: 96.88%
(seven combination
mixtures of meat)

[242,243]
Time series data for 235 wine
samples collected from
six gas sensors

[244] Proposed model based on
CNN

Accuracy: 99.2%
(low quality/average
quality/high quality)

[245]

48,846 rows for rice
quality acquired from
nine gas sensors and
four other sensors for
related data

[245] Proposed model based on
KNN

R2: 0.7217;
RMSE: 3.8043

[246] Gradient Tree Boosting Accuracy: 96%
(expired/non-expired)

[247] Complement Naïve Bayes
classifier

Accuracy: 98%
(expired/non-expired)

Multinomial Naïve Bayes
classifier

Accuracy: 97%
(expired/non-expired)

Gaussian Naïve Bayes
classifier

Accuracy: 82%
(expired/non-expired)

Bernoulli Naïve Bayes
classifier

Accuracy: 52%
(expired/non-expired)

[248] MLP Accuracy: 99.84%
(expired/non-expired)

Lesson Learned

Our analysis reveals the following results:

• Public datasets provide a valuable foundation for developing and testing new models
or algorithms for odor identification and classification.

• Public datasets accelerate comparative research. The availability of well-structured
datasets has enabled researchers to benchmark different models, promoting trans-
parency and repeatability. As Table 11 shows, deep learning models outperform
traditional classifiers in some cases. Additionally, approaches that combine multiple
classifiers tend to boost accuracy and model stability. Such comparisons are possible
because the researchers employed the same dataset.

• Diverse model strategies provide complementary insights. The use of a wide range
of algorithms across datasets shows that no single approach performs best across all
datasets and applications. Different algorithms excel under specific data characteristics
and task requirements.

• Model performance is dataset dependent. Even if the authors of the cited research
efforts reported high accuracies, these are heavily influenced by the specific dataset,
number of classes, sensor types, and experimental conditions.
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5. Research Gaps and Future Research Opportunities
Despite promising progress, a significant gap remains between lab scale e-nose pro-

totypes and practical, market-ready solutions for food quality and safety monitoring.
Current limitations include insufficient sensor sensitivity and stability, challenges in device
miniaturization and portability, lack of standardized testing protocols, limited real-time
processing capabilities, and lack of support for the user-friendly visualization of the odor
classification and identification results. Furthermore, there is a lack of robust data fusion
strategies and comprehensive odor reference datasets to support reliable decision making
in diverse real-world scenarios.

To address these gaps, future research should focus on the following areas:

• Sensor technology: We must develop novel gas-sensitive materials with enhanced
selectivity and sensitivity for food VOCs, new gas sensors with fast response time,
adaptive calibration methods, and sensor baseline correction techniques to improve
the stability of the gas sensors and integrate bio-inspired or biomimetic sensors.

• Data processing: We must implement deep learning algorithms for pattern recogni-
tion and VOC classification. We must develop and implement efficient multi-sensor
(e-nose, e-tongue, e-eye) data fusion algorithms for a more holistic food profiling
approach. Additionally, we must also develop standardized odor databases and
reference libraries and real-time data analysis platforms for on-site decision making.

• Miniaturization and portability: We must integrate micro-electro-mechanical systems/
nano-electro-mechanical systems technology for compact and low-power devices. We
must also develop reliable wireless and IoT-enabled e-noses for remote monitoring.

• Standardization: We must develop standardized testing protocols across different food
types and storage conditions.

To consolidate the practical contributions of this review, Table 12 summarizes the
key research gaps identified in current electronic nose applications and the corresponding
solutions proposed in this work.

Table 12. Summary of gaps and corresponding solutions in this work.

Identified Gap Recommended Solution in This Review

Low real-world deployment despite high
lab accuracy

Provide case studies and benchmarking
tables to bridge lab-to-field gaps

Sensor selectivity and sensitivity
challenges

Develop gas-sensitive materials with
enhanced selectivity and sensitivity for
food VOCs, or design bio-inspired or
biomimetic sensors that mimic natural
senses to improve detection accuracy in
food analysis

Sensor response time challenges Design gas sensors with fast response
times

Sensor drift and calibration challenges
Introduce adaptive/recalibrating machine
learning models and emphasize real-time
feedback control

Black-box nature of machine learning
models used in classification

Recommend interpretable machine
learning models and alignment with food
safety regulations (i.e., Codex/ISO)

Lack of efficient multi-sensor (e-nose,
e-tongue, e-eye) data fusion algorithms
results in incomplete food profiling

Develop advanced data fusion
frameworks using machine learning,
hybrid fusion techniques, and
synchronized pre-processing
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Table 12. Cont.

Identified Gap Recommended Solution in This Review

Miniaturization and portability challenges

Recommend integration of
micro-electro-mechanical systems/
nano-electro-mechanical systems
technologies for compact, low-power
devices

Lack of standardization in methodology
and validation

Recommend universal protocols for data
collection, validation, and sensor
benchmarking

Lack support in user-friendly
visualization of the odor classification and
identification results

Introduce real-time data analysis
platforms for on-site decision making

6. Conclusions
The application of electronic noses in the food industry has witnessed significant

growth over the past decade, demonstrating considerable potential in monitoring food
quality and safety, detecting spoilage, assessing freshness, and verifying food authenticity
across a wide range of products, including meat, seafood, fruits and vegetables, spices,
oils, dairy, and beverages. We arrive at this conclusion based on our analysis of more
than 350 peer-reviewed documents retrieved from three scientific databases (Scopus, IEEE
Xplore, WoS) using a targeted keyword search. This analysis followed a proposed taxon-
omy that categorized the publications into five distinct classes: (1) publications that present
the development of new electronic noses; (2) publications that use commercially available
or researcher-developed electronic noses, either alone or in combination with other tech-
niques; (3) publications that introduce new/enhanced gas sensors or novel materials for
the development of gas sensors; (4) publications that present the outcomes of applying
existing algorithms or techniques for pattern recognition, or their fusion, on food-related
datasets available online; and (5) review studies. Moreover, the analysis revealed that,
despite notable progress, several challenges remain. E-nose systems still rely on general-
purpose sensor arrays, limiting their adaptability to diverse types of food. In addition,
issues related to sensor noise, drift, calibration, temperature, or modularization continue to
hinder widespread industrial adoption. Moreover, while many studies report high classi-
fication accuracy, there is often a lack of standardization in methodologies/protocols for
data pre-processing, feature selection, model deployment, and testing, along with limited
application in real-world scenarios. Future research directions must focus on gas sensor
technology, data processing, miniaturization and portability, and standardization.
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Abbreviations
The following abbreviations are used in this manuscript:

ADC analog-to-digital converters
ANNs artificial neural networks
CNN Convolutional Neural Network
CNT carbon nanotube
CP conducting polymer
GC–IMS Gas Chromatography with Ion Mobility Spectrometry
GC–MS Gas Chromatography–Mass Spectrometry
KNNs k-nearest neighbors
LDA linear discriminant analysis
LSTM Long Short-Term Memory
MLP Multilayer Perceptron
MOS metal oxide semiconductor
MSE Mean Squared Error (MSE)
PCA principal component analysis
PIC Programmable Interface Controller
PLS-DA Partial Least Squares-Discriminant Analysis
PNN Probabilistic Neural Network
PPM Parts per Million
QCM quartz crystal microbalance
R2 R-squared
RMSE Root Mean Square Error
SAW surface acoustic wave
SVMs support vector machines
SVR Support Vector Machine Regression Technique
VOCs volatile organic compounds
WoS Web of Science
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124. Tămâian, A.; Folea, S. Spoiled Food Detection Using a Matrix of Gas Sensors. In Proceedings of the 2024 IEEE International
Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 16–18 May 2024; pp. 1–5. [CrossRef]

125. Bosch Sensortec. BME688–Digital Low Power Gas, Pressure, Temperature & Humidity Sensor with AI. Technical Report, Bosch
Sensortec, 2024. Available online: https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors/bme688/
(accessed on 18 March 2025).

126. Adafruit. Adafruit HUZZAH32–ESP32 Feather. Technical Report, Adafruit Industries, 2024. Available online: https:
//cdn-learn.adafruit.com/downloads/pdf/adafruit-huzzah32-esp32-feather.pdf (accessed on 18 March 2025).

127. Omatu, S.; Yano, M. E-nose system by using neural networks. Neurocomputing 2016, 172, 394–398. [CrossRef]
128. Bhujbal, K.; Rawat, A. Artificial Nose: Machine Learning model for categorization & identification of spices. In Proceedings

of the 2023 International Conference on Computational Intelligence, Communication Technology and Networking (CICTN),
Ghaziabad, India, 20–21 April 2023; pp. 596–599. [CrossRef]

129. Kukade, M.; Karve, T.; Gharpure, D. Identification and Classification of Spices by Machine Learning. In Proceedings of the 2019
IEEE International Conference on Intelligent Systems and Green Technology (ICISGT), Visakhapatnam, India, 29–30 June 2019;
pp. 1–13. [CrossRef]

130. Yunxiang, L.; Tianwei, L. Study on electronic nose and algorithm for identification of spice. In Proceedings of the 2016 First
IEEE International Conference on Computer Communication and the Internet (ICCCI), Wuhan, China, 13–15 October 2016;
pp. 518–521. [CrossRef]

131. Analog Devices. AD7606: 16-Bit, 8-Channel, Simultaneous Sampling Analog-to-Digital Converter (ADC). 2019. Available online:
https://www.analog.com/en/products/ad7606.html (accessed on 18 March 2025).

132. Samsung Electronics. S3C6410: ARM11-Based Mobile Application Processor. 2009. Available online: https://www.samsung.
com/semiconductor/ (accessed on 18 March 2025).

133. Choirul Amri, T.; Sarno, R.; Sunaryono, D.; Ahsana Putri, R. Clustering in A Sensor Array System Based on The Distribution
of Volatile Compounds from Palm Oil Using Electronic Nose. In Proceedings of the 2024 16th International Conference on
Information Technology and Electrical Engineering (ICITEE), Bali, Indonesia, 23–25 October 2024; pp. 189–194. [CrossRef]

http://dx.doi.org/10.1109/ISENSE63713.2024.10872099
http://jmlr.org/papers/v9/vandermaaten08a.html
https://projecteuclid.org/euclid.bsmsp/1200512992
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1016/j.measurement.2019.06.005
https://www.microchip.com/en-us/product/atmega8
http://dx.doi.org/10.1109/DICCT61038.2024.10533165
https://www.nodemcu.com/index_en.html
http://dx.doi.org/10.3390/s18103256
http://www.ncbi.nlm.nih.gov/pubmed/30262785
https://www.ni.com/docs/en-US/bundle/usb-6008-6009-feature/page/introduction.html
https://www.ni.com/docs/en-US/bundle/usb-6008-6009-feature/page/introduction.html
http://dx.doi.org/10.5505/pajes.2023.71242
https://docs.arduino.cc/hardware/due/
http://dx.doi.org/10.1109/HNICEM48295.2019.9072715
http://dx.doi.org/10.1109/AQTR61889.2024.10554106
https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors/bme688/
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-huzzah32-esp32-feather.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-huzzah32-esp32-feather.pdf
http://dx.doi.org/10.1016/j.neucom.2015.03.101
http://dx.doi.org/10.1109/CICTN57981.2023.10141407
http://dx.doi.org/10.1109/ICISGT44072.2019.00015
http://dx.doi.org/10.1109/CCI.2016.7778977
https://www.analog.com/en/products/ad7606.html
https://www.samsung.com/semiconductor/
https://www.samsung.com/semiconductor/
http://dx.doi.org/10.1109/ICITEE62483.2024.10808827


Sensors 2025, 25, 4437 45 of 49

134. Ghosal, A.; Nandy, A.; Das, A.K.; Goswami, S.; Panday, M. A Short Review on Different Clustering Techniques and Their
Applications. In Proceedings of the Emerging Technology in Modelling and Graphics; Mandal, J.K., Bhattacharya, D., Eds.; Springer:
Singapore, 2020; pp. 69–83. [CrossRef]

135. Ivanov, S.; Todorov, T.; Nenov, T.; Wilk-Jakubowski, J. Multisensor Sunflower Oil Quality Assessment System Based on “Electronic
Nose”. In Proceedings of the 2023 International Conference Automatics and Informatics (ICAI), Varna, Bulgaria, 5–7 October 2023;
pp. 290–294. [CrossRef]

136. SGX Sensortech. MICS-6814: Multiple Gas Sensor. Available online: https://www.sgxsensortech.com/content/uploads/2015/0
2/1143_Datasheet-MiCS-6814-rev-8.pdf (accessed on 20 March 2025).

137. Microchip Technology Inc. MCP9700. Available online: https://www.microchip.com/en-us/product/mcp9700#Documentation
(accessed on 20 May 2025).

138. Gonzalez Viejo, C.; Fuentes, S. Digital Detection of Olive Oil Rancidity Levels and Aroma Profiles Using Near-Infrared
Spectroscopy, a Low-Cost Electronic Nose and Machine Learning Modelling. Chemosensors 2022, 10, 159. [CrossRef]

139. Oates, M.J.; Fox, P.; Sanchez-Rodriguez, L.; Ángel, A. Carbonell-Barrachina.; Ruiz-Canales, A. DFT based classification of olive oil
type using a sinusoidally heated, low cost electronic nose. Comput. Electron. Agric. 2018, 155, 348–358. [CrossRef]

140. Sidhu, T.; Bhajla, B.; Das, S. Numerical algorithms for protection and metering devices. In Encyclopedia of Electrical and Electronic
Power Engineering; García, J., Ed.; Elsevier: Oxford, UK, 2023; pp. 45–87. [CrossRef]

141. Zorpeykar, S.; Mirzaee-Ghaleh, E.; Karami, H.; Ramedani, Z.; Wilson, A.D. Electronic Nose Analysis and Statistical Methods for
Investigating Volatile Organic Compounds and Yield of Mint Essential Oils Obtained by Hydrodistillation. Chemosensors 2022,
10, 486. [CrossRef]

142. Rasekh, M.; Karami, H.; Wilson, A.D.; Gancarz, M. Classification and Identification of Essential Oils from Herbs and Fruits Based
on a MOS Electronic-Nose Technology. Chemosensors 2021, 9, 142. [CrossRef]

143. Graboski, A.; Feltes, G.; Zakrzevski, C.; Shimizu, F.M.; Steffens, J.; Paroul, N.; Steffens, C. Adulteration of Clove Essential Oil:
Detection Using an Electronic Nose with Polymeric Gas Sensors. Food Anal. Methods 2024, 17, 296–308. [CrossRef]

144. Chen, I.T.; Chen, C.C.; Dai, H.J.; Rianto, B.; Huang, S.K.; Lee, C.H. An Incremental Learning Method for Preserving World Coffee
Aromas by Using an Electronic Nose and Accumulated Specialty Coffee Datasets. IEEE Trans. Agrifood Electron. 2024, 2, 12–27.
[CrossRef]

145. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [CrossRef]

146. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural
Netw. Learn. Syst. 2017, 28, 2222–2232. [CrossRef] [PubMed]

147. Huang, S.; Riemenschneider, L.; Panes-Ruiz, L.; Ibarlucea, B.; Cuniberti, G. Discrimination of Complex Mixtures Using Carbon
Nanotubes-based Multichannel Electronic Nose: Coffee Aromas. In Proceedings of the 2023 IEEE Nanotechnology Materials and
Devices Conference (NMDC), Paestum, Italy, 22–25 October 2023; pp. 1–4. [CrossRef]

148. Sberveglieri, V.; Pulvirenti, A.; Comini, E.; Carmona, E.N. What happens at the aroma of coffee beans after roasting? MOX
nanowire technology by Novel Electronic Nose to discover the fingerprint. Int. J. Smart Sens. Intell. Syst. 2019, 12, 1–4. [CrossRef]

149. Thazin, Y.; Pobkrut, T.; Kerdcharoen, T. Prediction of Acidity Levels of Fresh Roasted Coffees Using E-nose and Artificial Neural
Network. In Proceedings of the 2018 10th International Conference on Knowledge and Smart Technology (KST), Chiang Mai,
Thailand, 31 January–3 February 2018; pp. 210–215. [CrossRef]

150. Broomhead, D.S.; Lowe, D. Multivariable functional interpolation and adaptive networks. Complex Syst. 1988, 2, 321–355.
Available online: https://sci2s.ugr.es/keel/pdf/algorithm/articulo/1988-Broomhead-CS.pdf (accessed on 18 March 2025).

151. Andre, R.S.; Campaner, K.; Facure, M.H.M.; Mercante, L.A.; Bogusz, S.; Correa, D.S. Nanocomposite-Based Chemiresistive
Electronic Nose and Application in Coffee Analysis. ACS Food Sci. Technol. 2021, 1, 1464–1471. [CrossRef]

152. Sanislav, T.; Sipos, D.A.; Mois, G.; Folea, S. Intelligent System for Coffee Odor Identification and Classification. In Proceedings of
the 2024 32nd Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27 November 2024; pp. 1–4. [CrossRef]

153. Ketkar, N. Stochastic Gradient Descent. In Deep Learning with Python: A Hands-On Introduction; Apress: Berkeley, CA, USA, 2017;
pp. 113–132. [CrossRef]

154. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning
Representations (ICLR), San Diega, CA, USA, 7–9 May 2015. [CrossRef]

155. Banerjee(Roy), R.; Chattopadhyay, P.; Tudu, B.; Bhattacharyya, N.; Bandyopadhyay, R. Artificial flavor perception of black tea
using fusion of electronic nose and tongue response: A Bayesian statistical approach. J. Food Eng. 2014, 142, 87–93. [CrossRef]

156. National Instruments. PCI-6035E: 16-Bit, 200 kS/s, 32-Channel, Analog I/O Device. 2024. Available online:
https://www.artisantg.com/TestMeasurement/73100-4/National-Instruments-PCI-6035E-200-kS-s-16-Bit-Multifunction-
DAQ?srsltid=AfmBOoq-LdUEsAT7NfmWSD1hvS7BW2hKCeG_cP2spv1Q5ImNk-P02smn (accessed on 18 March 2025).

157. Zhang, D. Bayesian Classification. In Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval; Springer
International Publishing: Cham, Switzerland, 2019; pp. 161–178. [CrossRef]

http://dx.doi.org/10.1007/978-981-13-7403-6_9
http://dx.doi.org/10.1109/ICAI58806.2023.10339030
https://www.sgxsensortech.com/content/uploads/2015/02/1143_Datasheet-MiCS-6814-rev-8.pdf
https://www.sgxsensortech.com/content/uploads/2015/02/1143_Datasheet-MiCS-6814-rev-8.pdf
https://www.microchip.com/en-us/product/mcp9700#Documentation
http://dx.doi.org/10.3390/chemosensors10050159
http://dx.doi.org/10.1016/j.compag.2018.10.026
http://dx.doi.org/10.1016/B978-0-12-821204-2.00131-8
http://dx.doi.org/10.3390/chemosensors10110486
http://dx.doi.org/10.3390/chemosensors9060142
http://dx.doi.org/10.1007/s12161-023-02564-8
http://dx.doi.org/10.1109/TAFE.2023.3337887
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://www.ncbi.nlm.nih.gov/pubmed/27411231
http://dx.doi.org/10.1109/NMDC57951.2023.10343973
http://dx.doi.org/10.21307/ijssis-2019-052
http://dx.doi.org/10.1109/KST.2018.8426206
https://sci2s.ugr.es/keel/pdf/algorithm/articulo/1988-Broomhead-CS.pdf
http://dx.doi.org/10.1021/acsfoodscitech.1c00173
http://dx.doi.org/10.1109/TELFOR63250.2024.10819190
http://dx.doi.org/10.1007/978-1-4842-2766-4_8
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.1016/j.jfoodeng.2014.06.004
https://www.artisantg.com/TestMeasurement/73100-4/National-Instruments-PCI-6035E-200-kS-s-16-Bit-Multifunction-DAQ?srsltid=AfmBOoq-LdUEsAT7NfmWSD1hvS7BW2hKCeG_cP2spv1Q5ImNk-P02smn
https://www.artisantg.com/TestMeasurement/73100-4/National-Instruments-PCI-6035E-200-kS-s-16-Bit-Multifunction-DAQ?srsltid=AfmBOoq-LdUEsAT7NfmWSD1hvS7BW2hKCeG_cP2spv1Q5ImNk-P02smn
http://dx.doi.org/10.1007/978-3-030-17989-2_7


Sensors 2025, 25, 4437 46 of 49

158. Mu, F.; Gu, Y.; Zhang, J.; Zhang, L. Milk Source Identification and Milk Quality Estimation Using an Electronic Nose and Machine
Learning Techniques. Sensors 2020, 20, 4238. [CrossRef] [PubMed]

159. LaValley, M.P. Logistic Regression. Circulation 2008, 117, 2395–2399. [CrossRef] [PubMed]
160. Zheng, W.; Wang, Y.; Liang, X.; Zhang, A. Origin identification for rice wines based on an electronic nose and convolution

dot-product attention mechanism. Sens. Actuators A Phys. 2024, 375, 115521. [CrossRef]
161. Zhang, K.; Sun, M.; Han, T.X.; Yuan, X.; Guo, L.; Liu, T. Residual Networks of Residual Networks: Multilevel Residual Networks.

IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 1303–1314. [CrossRef]
162. Sun, J.T.; Lee, C.H.; Rianto, B.; Huang, S.K. Combining an Electronic Nose System with Artificial Intelligence Methods for Odor

Identification of Spirits. In Proceedings of the 2024 10th International Conference on Applied System Innovation (ICASI), Kyoto,
Japan, 17–21 April 2024; pp. 332–334. [CrossRef]

163. Zhang, W.; Liu, T.; Brown, A.; Ueland, M.; Forbes, S.L.; Su, S.W. The Use of Electronic Nose for the Classification of Blended and
Single Malt Scotch Whisky. IEEE Sens. J. 2022, 22, 7015–7021. [CrossRef]

164. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer:
New York, NY, USA, 2009. Available online: https://hastie.su.domains/ElemStatLearn/ (accessed on 18 March 2025).

165. Sun, J.T.; Lee, C.H. AI-driven Sensor Array Electronic Nose System for Authenticating and Recognizing Aromas in Spirit Samples.
Sens. Mater. 2025, 37, 23–40. [CrossRef]

166. Caterini, A.L.; Chang, D.E. Recurrent Neural Networks. In Deep Neural Networks in a Mathematical Framework; Springer
International Publishing: Cham, Switzerland, 2018; pp. 59–79. [CrossRef]

167. Liang, K.; Wang, Y.; He, J.Q.; Meng, H.; Chen, S.Q.; Chang, J.Y.; Gao, J.M.; Wang, J.H.; Feng, L. An Electronic Nose Based on
Copper Oxide Heterojunctions for Rapid Assessment of Liquor. Chin. J. Anal. Chem. 2019, 47, e19073–e19080. [CrossRef]

168. da Silva Torres, E.A.F.; Garbelotti, M.L.; Moita Neto, J.M. The application of hierarchical clusters analysis to the study of the
composition of foods. Food Chem. 2006, 99, 622–629. [CrossRef]

169. Jin, J.; Tang, X.; Cai, Y.; Han, Y.; Wang, M.; Zheng, H.; Hui, G. Optimization of eigenvalue selection in Chinese liquors
discrimination based on electronic nose. Food Bioprocess Technol. 2014, 8, 270–276. [CrossRef]

170. Harnsoongnoen, S.; Babpan, N.; Srisai, S.; Kongkeaw, P.; Srisongkram, N. A Portable Electronic Nose Coupled with Deep
Learning for Enhanced Detection and Differentiation of Local Thai Craft Spirits. Chemosensors 2024, 12, 221. [CrossRef]

171. Sensirion. SHT15 Digital Temperature and Humidity Sensor. Available online: https://sensirion.com/media/documents/BD4
5ECB5/61642783/Sensirion_Humidity_Sensors_SHT1x_Datasheet.pdf (accessed on 20 March 2025).

172. Bourlard, H.A.; Morgan, N. Multilayer Perceptrons. In Connectionist Speech Recognition: A Hybrid Approach; Springer: Boston, MA,
USA, 1994; pp. 59–80. [CrossRef]

173. Viejo, C.G.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost e-nose to assess aroma profiles:
An artificial intelligence application to assess beer quality. Sens. Actuators B Chem. 2020, 308, 127688. [CrossRef]

174. Hanwei Electronics Co., Ltd. MG811 Carbon Dioxide (CO2) Sensor Module. Available online: https://www.yumpu.com/en/
document/read/33225829/mg811-datasheet (accessed on 20 March 2025).

175. Aosong Electronics Co., Ltd. AM2320 Digital Temperature and Humidity Sensor. Available online: https://cdn-shop.adafruit.
com/product-files/3721/AM2320.pdf (accessed on 20 March 2025).

176. McNair, H.M.; Miller, J.M.; Snow, N.H. Basic Gas Chromatography, 3rd ed.; Wiley: Hoboken, NJ, USA, 2019; p. 288.
177. AIRSENSE Analytics GmbH. PEN3–Portable Electronic Nose Technical Data. Available online: https://airsense.com/sites/

default/files/flyer_pen.pdf (accessed on 20 March 2025).
178. Hazarika, S.; Choudhury, R.; Montazer, B.; Medhi, S.; Goswami, M.P.; Sarma, U. Detection of Citrus Tristeza Virus in Mandarin

Orange Using a Custom-Developed Electronic Nose System. IEEE Trans. Instrum. Meas. 2020, 69, 9010–9018. [CrossRef]
179. Esfahani, S.; Wicaksono, A.; Mozdiak, E.; Arasaradnam, R.P.; Covington, J.A. Non-Invasive Diagnosis of Diabetes by Volatile

Organic Compounds in Urine Using FAIMS and Fox4000 Electronic Nose. Biosensors 2018, 8, 121. [CrossRef] [PubMed]
180. FOODSniffer. The Foodsniffer. Available online: https://www.myfoodsniffer.com/product.html (accessed on 23 March 2025).
181. Aryballe. NeOse Advance Datasheet. Available online: http://aryballe.com/wp-content/uploads/2021/07/NeOse_Advance_

DS_072121.pdf (accessed on 20 March 2025).
182. Sensigent Intelligent Sensing Solution. Cyranose Electronic Nose. Available online: https://www.sensigent.com/cyranose-320.

html (accessed on 24 March 2025).
183. Yu, Y.; Li, Q.; Shi, Y. Integrating Criss-Cross Attention Mechanism for Origin Traceability of Peanuts Using Electronic Nose

Technology. In Proceedings of the 2024 7th International Symposium on Autonomous Systems (ISAS), Chongqing, China,
7–9 May 2024; pp. 1–5. [CrossRef]

184. Huang, Z.; Wang, X.; Wei, Y.; Huang, L.; Shi, H.; Liu, W.; Huang, T.S. CCNet: Criss-Cross Attention for Semantic Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2020, 45, 6896–6908. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s20154238
http://www.ncbi.nlm.nih.gov/pubmed/32751425
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.682658
http://www.ncbi.nlm.nih.gov/pubmed/18458181
http://dx.doi.org/10.1016/j.sna.2024.115521
http://dx.doi.org/10.1109/TCSVT.2017.2654543
http://dx.doi.org/10.1109/ICASI60819.2024.10547960
http://dx.doi.org/10.1109/JSEN.2022.3147185
https://hastie.su.domains/ElemStatLearn/
http://dx.doi.org/10.18494/SAM5375
http://dx.doi.org/10.1007/978-3-319-75304-1_5
http://dx.doi.org/10.1016/S1872-2040(19)61173-4
http://dx.doi.org/10.1016/j.foodchem.2005.08.032
http://dx.doi.org/10.1007/s11694-014-9185-4
http://dx.doi.org/10.3390/chemosensors12100221
https://sensirion.com/media/documents/BD45ECB5/61642783/Sensirion_Humidity_Sensors_SHT1x_Datasheet.pdf
https://sensirion.com/media/documents/BD45ECB5/61642783/Sensirion_Humidity_Sensors_SHT1x_Datasheet.pdf
http://dx.doi.org/10.1007/978-1-4615-3210-1_4
http://dx.doi.org/10.1016/j.snb.2020.127688
https://www.yumpu.com/en/document/read/33225829/mg811-datasheet
https://www.yumpu.com/en/document/read/33225829/mg811-datasheet
https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf
https://cdn-shop.adafruit.com/product-files/3721/AM2320.pdf
https://airsense.com/sites/default/files/flyer_pen.pdf
https://airsense.com/sites/default/files/flyer_pen.pdf
http://dx.doi.org/10.1109/TIM.2020.2997064
http://dx.doi.org/10.3390/bios8040121
http://www.ncbi.nlm.nih.gov/pubmed/30513787
https://www.myfoodsniffer.com/product.html
http://aryballe.com/wp-content/uploads/2021/07/NeOse_Advance_DS_072121.pdf
http://aryballe.com/wp-content/uploads/2021/07/NeOse_Advance_DS_072121.pdf
https://www.sensigent.com/cyranose-320.html
https://www.sensigent.com/cyranose-320.html
http://dx.doi.org/10.1109/ISAS61044.2024.10552549
http://dx.doi.org/10.1109/TPAMI.2020.3007032
http://www.ncbi.nlm.nih.gov/pubmed/32750802


Sensors 2025, 25, 4437 47 of 49

185. Kodithuwakku, P.; Jayasundara, D.; Munaweera, I.; Jayasinghe, R.; Thoradeniya, T.; Bogahawatta, A.; Manuda, K.R.J.; Weerasekera,
M.; Kottegoda, N. Ilmenite-Grafted Graphene Oxide as an Antimicrobial Coating for Fruit Peels. ACS Omega 2024, 9, 26568–26581.
[CrossRef] [PubMed]

186. Zhang, P.P.; Gui, X.J.; Fan, X.H.; Han, L.; Li, H.Y.; Li, X.P.; Dong, F.Y.; Wang, Y.L.; Jing, Y.; Shi, J.H.; et al. Quality identification
of Amomi fructus using E-nose, HS-GC-IMS, and intelligent data fusion methods. Front. Chem. 2025, 13, 1544743. [CrossRef]
[PubMed]

187. Lee, L.C.; Liong, C.Y.; Jemain, A.A. Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional
(HD) data: A review of contemporary practice strategies and knowledge gaps. Analyst 2018, 143, 3526–3539. [CrossRef] [PubMed]

188. Yang, Y.; Wei, L. Application of E-nose technology combined with artificial neural network to predict total bacterial count in milk.
J. Dairy Sci. 2021, 104, 10558–10565. [CrossRef] [PubMed]

189. Mu, W.; Zhao, Y.; Wang, Z.; He, Y.; Yang, C.; Wang, J. Combining lipase enzymatic techniques and antioxidants on the flavor of
structured lipids (SLs) prepared from goat butter and coconut oil. Food Biosci. 2024, 60, 104332. [CrossRef]

190. Boyacı, E.; Rodríguez-Lafuente, Á.; Gorynski, K.; Mirnaghi, F.; Souza-Silva, É.A.; Hein, D.; Pawliszyn, J. Sample preparation with
solid phase microextraction and exhaustive extraction approaches: Comparison for challenging cases. Anal. Chim. Acta 2015,
873, 14–30. [CrossRef] [PubMed]

191. Dai, J.; Li, W.; Dong, G. Dung Beetle Optimizer Algorithm and Machine Learning-Based Genome Analysis of Lactococcus lactis:
Predicting Electronic Sensory Properties of Fermented Milk. Foods 2024, 13, 1958. [CrossRef] [PubMed]

192. Xue, J.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2023,
79, 7305–7336. [CrossRef]

193. Zheng, W.; Yuan, Q.; Zhang, A.; Lei, Y.; Pan, G. Data augmentation of flavor information for electronic nose and electronic tongue:
An olfactory-taste synesthesia model combined with multiblock reconstruction method. Expert Syst. Appl. 2025, 272, 126810.
[CrossRef]
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