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Abstract: Automated food safety inspection systems rely heavily on the visual detection of
contamination, spoilage, and foreign objects in food products. Current approaches typically
require extensive labeled training data for each specific hazard type, limiting generalizabil-
ity to novel or rare safety issues. We propose a zero-shot detection framework for visual
food safety hazards that enables the identification of previously unseen contamination
types without requiring explicit training examples. Our approach adapts and extends the
Knowledge-Enhanced Feature Synthesizer (KEFS) methodology to the food safety domain
by constructing a specialized knowledge graph that encodes visual safety attributes and
their correlations with food categories. We introduce a Food Safety Knowledge Graph
(FSKG) that models the relationships between 26 food categories and 48 visual safety at-
tributes (e.g., discoloration, mold patterns, foreign material characteristics) extracted from
food safety databases and expert knowledge. Using this graph as the prior knowledge,
our system synthesizes discriminative visual features for unseen hazard classes through
a multi-source graph fusion module and region feature diffusion model. Experiments on
our newly constructed Food Safety Visual Hazards (FSVH) dataset demonstrate that our
approach achieves 63.7% mAP in zero-shot hazard detection, outperforming state-of-the-art
general zero-shot detection methods by 6.9%. Furthermore, our framework demonstrates
robust generalization to fine-grained novel hazard categories while maintaining high detec-
tion performance (59.8% harmonic mean) in generalized zero-shot scenarios where both
seen and unseen hazards may occur simultaneously. This work represents a significant
advancement toward automated, generalizable food safety inspection systems capable of
adapting to emerging visual hazards without a costly retraining process.

Keywords: zero-shot detection; food safety; knowledge graphs; feature synthesis

1. Introduction

Food safety presents a critical global challenge with significant health and economic
implications. The World Health Organization estimates that unsafe food causes 600 million
cases of foodborne diseases annually, resulting in 420,000 deaths worldwide [1]. Visual in-
spection remains a cornerstone of food safety assessment, with trained personnel examining
food products for visible signs of spoilage, contamination, or foreign objects [2]. However,
despite technological advances, manual inspection remains labor-intensive, subjective,
and limited in scalability [3].
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Recent progress in computer vision and deep learning has enabled automated visual
food inspection systems that can detect various safety hazards with high accuracy [4,5].
These systems typically rely on supervised learning approaches that require extensive
labeled training data for each specific hazard type they aim to detect. While effective
for known hazards with abundant training examples, these approaches face significant
limitations when encountering novel or rare safety issues that are not represented in
the training data. In real-world food production and distribution chains, new types of
contamination, adulteration, or spoilage patterns constantly emerge, necessitating systems
that can generalize beyond their training distribution [6].

Zero-shot learning (ZSL) offers a promising paradigm to address this challenge by
enabling models to recognize categories not seen during training [7]. In particular, Zero-
Shot Detection (ZSD) extends this concept to simultaneously localize and classify objects
from novel categories [8]. ZSD achieves this ability by learning a mapping between visual
features and semantic descriptions, allowing the model to detect instances of previously
unseen classes based on their semantic attributes. While ZSD has shown success in general
object detection domains [9,10], its application to fine-grained food safety hazard detection
presents unique challenges.

Food safety hazards often manifest as subtle visual cues (such as discoloration, texture
anomalies, and foreign materials) that share common visual patterns across different food
categories. For example, mold contamination may appear differently on bread versus fruit,
yet shares underlying visual attributes that should enable generalization [11]. However,
the inter-class similarity among different types of hazards (e.g., various forms of microbial
contamination) and the complexity of food attributes create additional challenges for
zero-shot approaches. Traditional ZSD methods that rely solely on word embeddings or
simple attribute vectors struggle to capture these nuanced relationships, resulting in poor
generalization to unseen hazard categories [12].

To address these challenges, we propose a novel framework for the Zero-Shot Detec-
tion of Food Safety Hazards that adapts and extends the Knowledge-Enhanced Feature
Synthesizer (KEFS) methodology [12] to the food safety domain. Our approach leverages
structured domain knowledge about the relationships between food categories and visual
safety attributes to synthesize discriminative features for unseen hazard classes. At the
core of our framework is a specialized Food Safety Knowledge Graph (FSKG) that encodes
the correlations between 26 food categories and 48 visual safety attributes extracted from
food safety databases and expert knowledge.

This knowledge graph serves as prior information for our Multi-Source Graph Fusion
(MSGF) module, which learns to combine knowledge from multiple sources (ingredient
correlations, hyperclass relationships, and attribute co-occurrences) to generate robust se-
mantic representations. These representations condition a Region Feature Diffusion Model
(RFDM) that synthesizes realistic visual features for novel hazard categories. The synthe-
sized features enable our model to detect previously unseen food safety hazards without
requiring explicit training examples.

The contributions of our work are threefold:

*  Weintroduce a specialized FSKG that models the relationships between food categories
and visual safety attributes, providing structured prior knowledge for zero-shot
hazard detection.

*  We adapt and extend the Knowledge-Enhanced Feature Synthesizer framework to the
food safety domain, addressing the unique challenges of fine-grained visual hazard
detection through multi-source graph fusion and region feature diffusion.

*  We present a new Food Safety Visual Hazards (FSVH) dataset with rich attribute anno-
tations, establishing a benchmark for evaluating zero-shot food safety hazard detection.
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The experimental results demonstrate that our approach achieves 63.7% mAP in
zero-shot hazard detection, outperforming state-of-the-art general zero-shot detection
methods by 6.9%. Furthermore, our framework demonstrates robust generalization to fine-
grained novel hazard categories while maintaining a high detection performance (59.8%
harmonic mean) in generalized zero-shot scenarios where both seen and unseen hazards
may occur simultaneously.

The remainder of this paper is organized as follows: Section 2 reviews related work on
food safety inspections, zero-shot learning, and knowledge graphs. Section 3 details our pro-
posed approach, including the design of the Food Safety Knowledge Graph, the adaptation
of KEFS to food safety, and the training methodology. Section 4 presents the experimen-
tal results and comparisons with baseline methods. Finally, Section 5 concludes with a
discussion of the implications and future directions.

2. Related Work

Our work intersects several research domains, including food safety inspection, zero-
shot learning, and knowledge representation for visual recognition. In this section, we
review the relevant literature in these areas and position our contribution within the broader
research landscape.

2.1. Food Safety Inspection and Visual Analysis

Visual assessment has long been a cornerstone of food safety inspection, traditionally
performed by human inspectors trained to recognize signs of contamination, spoilage,
or foreign objects [13]. Recent advances in computer vision have enabled more automated
approaches to food safety inspection, reducing reliance on subjective human judgment and
increasing throughput in food production environments [14].

Early computer vision systems for food safety focused on detecting specific con-
taminants using handcrafted features and traditional machine learning techniques [15].
For example, Magnus et al. [16] developed methods for foreign object detection in food
products using color and textural features, while Cho et al. [17] employed spectral imaging
techniques to detect surface contaminants on poultry products.

The emergence of deep learning has significantly advanced automated food safety
inspection. Convolutional Neural Networks (CNNs) have become the dominant approach
for detecting various safety hazards, including mold [18], foreign objects [19], and microbial
contamination [4]. For instance, Ma et al. [20] employed CNNs to detect fruit diseases and
defects in agricultural settings, while Lin et al. [6] developed a multi-level deep learning
system for the rapid detection of various food hazards.

Despite these advances, most current deep learning approaches for food safety inspec-
tion operate in a closed-set paradigm, where all hazard types must be present in the training
data. This limitation significantly impairs their ability to detect novel or rare safety issues
not represented during training—a critical shortcoming in real-world scenarios where new
types of contamination constantly emerge [21]. Our work addresses this limitation by
developing a zero-shot detection framework specifically tailored for food safety hazards.

2.2. Zero-Shot Learning and Zero-Shot Detection

Zero-Shot Learning (ZSL) enables the recognition of categories not seen during train-
ing by establishing a mapping between visual features and semantic descriptions [7].
Traditional ZSL methods can be broadly categorized into two approaches: mapping-based
and generation-based.

Mapping-based methods learn a projection between visual and semantic spaces, al-
lowing the model to classify unseen categories based on their semantic attributes [22,23].
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For example, Lampert et al. [22] proposed Direct Attribute Prediction (DAP), which uses
attribute-based descriptions to recognize unseen classes. Frome et al. [23] introduced De-
ViSE, which leverages word embeddings to enable zero-shot recognition. However, these
methods typically suffer from the domain shift problem, where the projection learned from
the seen classes generalizes poorly to unseen ones [24].

Generation-based methods address this limitation by synthesizing visual features
for unseen classes based on their semantic descriptions, effectively transforming ZSL
into a supervised learning problem [25,26]. Xian et al. [25] proposed f-VAEGAN-D2,
which uses a conditional VAE-GAN architecture to generate features for unseen classes.
Schonfeld et al. [26] introduced CADA-VAE, which aligns visual and semantic distributions
in a shared latent space to improve feature generation.

ZSD extends ZSL to the object detection domain, enabling models to simultaneously
localize and classify objects from unseen categories [8]. Bansal et al. [8] pioneered ZSD by
adapting existing detection frameworks to incorporate semantic information. Subsequent
works have explored various approaches to improve ZSD performance. Rahman et al. [27]
proposed a polarity loss to better align visual and semantic features, while Zhu et al. [9] in-
troduced a feature generation approach that synthesizes region features for unseen classes.

More recently, generation-based methods have shown superior performance in ZSD.
Hayat et al. [28] proposed a GAN-based framework that synthesizes diverse features for
unseen classes, while Huang et al. [29] introduced a feature synthesizer that preserves the
structural relationships between classes. However, these methods typically rely on generic
word embeddings or simple attribute vectors, limiting their effectiveness for fine-grained
zero-shot tasks with complex class relationships, such as food safety hazard detection.

Our work builds upon generation-based ZSD but introduces a novel knowledge-
enhanced feature synthesis approach specifically designed for the food safety domain.
By leveraging rich domain knowledge encoded in a specialized food safety knowledge
graph, our method can capture complex relationships between food categories and visual
safety attributes, enabling the more effective zero-shot detection of food safety hazards.

2.3. Knowledge Graphs for Computer Vision

Knowledge graphs have emerged as powerful tools for incorporating structured
domain knowledge into computer vision tasks [30,31]. A knowledge graph represents
concepts (entities) as nodes and their relationships as edges, providing a structured repre-
sentation of domain knowledge that can guide visual recognition systems.

In object recognition, Wang et al. [32] leveraged knowledge graphs to improve zero-
shot learning by capturing the semantic relationships between object categories. Similarly,
Kampffmeyer et al. [33] proposed a hierarchical embedding approach that uses knowledge
graphs to exploit class hierarchies in zero-shot scenarios. These approaches demonstrate
that structured knowledge can significantly enhance generalization to unseen categories.

In the food domain, knowledge graphs have been developed to represent various
aspects of food, including ingredients, nutritional content, and cultural contexts [34,35].
FoodKG [34] is a comprehensive food knowledge graph that integrates data from multiple
sources, including recipes, nutritional information, and food-health relationships. While
these resources provide valuable domain knowledge, they primarily focus on nutritional
and culinary aspects rather than food safety.

Some recent works have begun to explore the integration of knowledge graphs with
computer vision for food analysis. Zhou et al. [12] introduced a knowledge-enhanced
framework for zero-shot food detection that leverages correlations between ingredients
from food knowledge graphs. Their approach, known as the Knowledge-Enhanced Feature
Synthesizer (KEFS), uses multi-source graph fusion to combine different types of food
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knowledge (ingredients, hyperclasses, etc.) to generate discriminative features for unseen
food categories.

Our work extends this line of research by developing a specialized FSKG that encodes
the relationships between food categories and visual safety attributes. Unlike previous food
knowledge graphs that focus on nutritional or culinary aspects, our FSKG is specifically
designed to capture visual characteristics of food safety hazards, enabling the more effective
zero-shot detection of safety issues across different food categories.

2.4. Feature Synthesis for Zero-Shot Learning

Feature synthesis has become a dominant approach for zero-shot learning, with var-
ious generative models proposed to create visual features for unseen classes [25,36,37].
Early approaches primarily relied on Generative Adversarial Networks (GANSs) [38] and
Variational Autoencoders (VAEs) [39] for feature generation.

Felix et al. [36] proposed a multi-modal cycle-consistent GAN for generating visual
features from semantic descriptions, while Xian et al. [25] combined VAE and GAN archi-
tectures to improve feature generation quality. However, these methods often struggle with
mode collapse and lack of diversity in the generated features, limiting their effectiveness
for zero-shot detection tasks.

Recent advances have focused on improving the quality and diversity of synthesized
features. Diffusion models [40,41] have emerged as a promising alternative to GANs
and VAEs, offering more stable training and diverse generation capabilities. These models
define a forward diffusion process that gradually adds noise to data and a reverse denoising
process that learns to recover the original data distribution.

In the zero-shot detection domain, Zhou et al. [12] introduced RFDM, which adapts
diffusion models to synthesize region features for object detection. By leveraging
knowledge-enhanced conditioning, RFDM can generate diverse and discriminative fea-
tures for unseen object categories, demonstrating superior performance compared to
GAN-based approaches.

Our work adapts the RFDM framework to the food safety domain, introducing several
innovations to address the unique challenges of synthesizing features for food safety haz-
ards. We modify the conditioning mechanism to incorporate domain-specific knowledge
from our Food Safety Knowledge Graph, enabling the model to generate features that can
capture the subtle visual cues characteristic of different safety hazards. Additionally, we
introduce a new training strategy that ensures the synthesized features are well-separated
across different hazard categories while maintaining the intra-class diversity necessary for
robust detection.

3. Methodology

This section details our proposed framework for the Zero-Shot Detection of Visual
Food Safety Hazards. Figure 1 illustrates the architecture of our method, which consists
of three primary components: (1) a Food Safety Knowledge Graph that encodes domain-
specific knowledge about visual food safety attributes, (2) a Knowledge-Enhanced Feature
Synthesizer that leverages this knowledge to generate discriminative visual features for
unseen hazard categories, and (3) a zero-shot detector that uses these synthesized features
to identify food safety hazards not seen during training.
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Figure 1. Overview of our Zero-Shot Food Safety Hazard Detection framework.

3.1. Problem Formulation

We formally define the Zero-Shot Food Safety Hazard Detection (ZS-FSHD) problem as
follows. Let Xs denote a training set containing M food images with annotated bounding
boxes belonging to Cs seen hazard classes. The label sets for seen and unseen hazard classes
are denotedas Vs = {1,...,Cs} and )V, = {Cs +1,..., C} respectively, where Vs N ), = @,
and C = Cs 4 C, is the total number of hazard classes (with C,, being the number of
unseen classes).

It is important to clarify that “zero-shot” in this context does not refer to detecting
zero incidents or the absence of hazards. Rather, it describes the ability to detect hazard
classes that have zero training examples—that is, hazard types that were never seen during
training. Our framework achieves this ability through a knowledge-transfer mechanism
that leverages semantic relationships between seen and unseen hazard classes.

For each class y € Y = JYsU ), we have corresponding semantic vectors
vy €V =VsUV,, where V; and V), are the semantic vector sets for seen and unseen
classes, respectively. These semantic vectors are 768-dimensional embeddings obtained
from BERT [42], where detailed textual descriptions of each hazard class are processed to
capture their visual and safety characteristics.

The key insight enabling zero-shot detection is that while the detector never observes
training examples of unseen hazard classes, it learns the relationships between visual
features and semantic attributes through the seen classes. For instance, during training on
seen hazards like “mold on bread”, the detector learns to associate visual patterns (fuzzy
texture, irregular patches) with corresponding semantic attributes. When encountering an
unseen hazard such as “bacterial colonies on fruit”, the detector recognizes it by matching
the observed visual patterns to the semantic attributes of the unseen class, effectively
transferring knowledge from seen to unseen domains through our Knowledge-Enhanced
Feature Synthesizer.

During inference, we are provided with a test set X} containing images with both seen
and unseen hazard classes. The goal of ZS-FSHD is to train a detection model on X5 with
semantic vectors V and detect both seen and unseen hazards in X;. We evaluate our method
in both ZSD settings, where the test images contain only unseen hazards, and Generalized
Zero-Shot Detection (GZSD) settings, where the test images may contain both seen and
unseen hazards.
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3.2. Food Safety Knowledge Graph

At the core of our approach is a specialized Food Safety Knowledge Graph (FSKG)
that encodes relationships between food categories and visual safety attributes. Unlike
general food knowledge graphs that focus on nutritional or culinary aspects, our FSKG
specifically models visual characteristics relevant to food safety hazards.

3.2.1. FSKG Construction

We construct the FSKG as a heterogeneous graph G = (N, ), where N = FU A
represents the node set comprising food categories F = {fi, fa, ..., fm} and visual safety
attributes A = {ay,ay,...,a,}. The edge set £ consists of three types of relationships that
capture different aspects of food safety knowledge.

Figure 2 illustrates a representative subgraph of our FSKG focusing on bread-related
hazards. The visualization shows three types of nodes: food categories (e.g., “White Bread”
and “Whole Wheat Bread”), visual attributes (e.g., “Fuzzy Growth Pattern” and “Green-
Blue Discoloration”), and their relationships. Edge thickness represents weight strength,
demonstrating how knowledge propagates through the network to enable feature synthesis
for unseen hazard classes.

0.82

0.83 0.83 0.72 0.68 0.45

- oSS

Legend:

Food-Food Relation
~—»- Food-Attribute Relation
Attribute-Attribute Relation

Food Category

<> Visual Attribute

Figure 2. A subgraph of the Food Safety Knowledge Graph showing bread-related hazards. Circular
nodes represent food categories, diamond nodes represent visual attributes, and edge thickness
indicates the strength of the relationship. Numbers on edges show weights: Food—Attribute Relations
(e.g., White Bread — Fuzzy Growth Pattern [0.85]), Food—Food Relations (e.g., White Bread <+ Whole
Wheat Bread [0.87]), and Attribute—Attribute Relations (e.g., Fuzzy Growth Pattern <> Green-Blue
Discoloration [0.73]).

Food-Attribute Relations (€r4): These edges connect food categories to their associ-
ated visual safety attributes, with the edge weights reflecting the relevance of each attribute
to the particular food category. The edge weight wf]-A between the food category f; and
attribute a; is determined as follows:

FA

;" = & pij - sij 1)

where p;; is the normalized frequency of attribute a; occurring in food category f; within
our dataset, s;; € [0, 1] is an expert-assigned importance score, and « is a normalization
constant. For example, the edge weight between “bread” and “mold growth pattern” is
0.85, reflecting both a high frequency of occurrence (68% of contaminated bread samples)
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and high expert importance (0.9). Conversely, “canned vegetables” and “mold growth
pattern” have a weight of only 0.15 due to the sterilization process preventing mold growth.

Food-Food Relations (£rr): These edges link related food categories based on their
similarity in composition and appearance, and their susceptibility to similar safety hazards.
The similarity score wll-;F between food categories f; and f; is computed as follows:

wh" = 0.4+ simeomp (fi, fj) + 0.4 - SiMpazara (fi, ;) + 0.2 - simproc (fi f;) 2)

where sim¢omp measures compositional similarity (water content, pH levels, nutrient pro-
file), simp,,arq captures shared susceptibility to hazards, and simpyo reflects processing and
storage requirement similarities. For instance, “fresh strawberries” and “fresh raspberries”
achieve a high similarity score of 0.92 due to their comparable water content (90-92%), pH
levels (3.2-3.5), and susceptibility to similar mold and bacterial contamination. In contrast,
“fresh strawberries” and “dried fruits” score only 0.28, as dehydration fundamentally alters
the hazard profile.

Attribute—Attribute Relations (€4 4): These edges connect visual safety attributes that
frequently co-occur or share visual similarities, allowing the model to learn correlations
between different manifestations of food safety issues. The co-occurrence weight is calcu-
lated based on the conditional probability of observing both attributes in the same food
safety incident.

To populate the FSKG, we extract information from three primary sources: (1) food
safety databases such as the FDA'’s Bacteriological Analytical Manual [43] and the USDA’s
Microbiology Laboratory Guidebook [44], (2) the scientific literature on food safety and
quality assessments, and (3) expert knowledge from food safety professionals.

We organize visual safety attributes into four main categories based on their phe-
nomenological characteristics. Appearance Attributes encompass basic visual features that
indicate potential safety issues, including discoloration, abnormal texture patterns, and vis-
ible foreign materials (such as plastic fragments or metal shavings). These attributes often
provide the most immediate visual cues for safety assessments. Decomposition Attributes
capture visual indicators of food spoilage or decay processes, including mold growth,
rotting tissues, and fermentation-related changes like abnormal bubble formation. These
attributes specifically target biological degradation processes. Decomposition Attributes
capture visible indicators of microbial activity or decay processes, including mold growth,
bacterial colonies that have formed visible biofilms, rotting tissues, and fermentation-related
changes. However, it is important to note that many dangerous foodborne pathogens do
not produce visible changes in food, and our vision-based system cannot detect invisible
contamination. These attributes specifically target visible biological degradation processes
rather than the pathogens themselves. Contamination Attributes represent visual signa-
tures of external agents compromising food safety, including visible bacterial colonies,
chemical residues, and evidence of pest activity such as insect parts or rodent hairs. These
attributes focus on exogenous contaminants that may render food unsafe. Structural At-
tributes identify abnormalities in the physical integrity of food items, such as irregular
cracks, punctures, or surface deformations that may indicate internal contamination or
improper processing. These attributes often signal issues that might not be immediately
visible on the surface.

In total, our FSKG includes 26 food categories and 48 visual safety attributes, with
1248 food-attribute relations, 325 food—food relations, and 574 attribute—attribute relations.

3.2.2. Knowledge Graph Embedding

To leverage the structured knowledge in our FSKG for feature synthesis, we first need
to obtain dense vector representations of the graph nodes and their relationships. We
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employ a knowledge graph embedding technique based on graph convolutional networks
(GCN ) [45] to learn embeddings that preserve the graph’s structural information.

Let A € RVIXIV pe the adjacency matrix of the FSKG, where A;; > 0 if there is an
edge between nodes i and j, and A;; = 0 otherwise. For heterogeneous relationships, we
create separate adjacency matrices A(") for each relation type r € {FA, FF, AA}.

We define the GCN-based embedding function #(-) as follows:

E=19(X,A) = Ac(AXW;)W, 3)

where X € RWI*do js the initial feature matrix of the nodes (initialized with word em-
beddings for food categories and attribute definitions), A = D~ 2AD"? is the normalized
adjacency matrix with D being the diagonal degree matrix of A, o(-) is the ReLU activation
function, and Wy € R%*4% and W, € R% >4 are learnable weight matrices. Here, dy
is the dimension of the initial node features, dj, is the hidden dimension, and d, is the
embedding dimension.

For each relation type r, we compute the corresponding embeddings:

EC) =y(x, A1) 4)

The final node embeddings are obtained by aggregating embeddings across relation

types:
Efz'nal = Z “VE(r) ®)
re{FA,FF,AA}
where a; are learnable attention weights that determine the importance of each relation
type in the final embedding.

3.3. Knowledge-Enhanced Feature Synthesizer

Building upon the framework introduced by Zhou et al. [12], we adapt the Knowledge-
Enhanced Feature Synthesizer (KEFS) to the food safety domain. Our KEFS consists of
two primary components: the Multi-Source Graph Fusion (MSGF) module, which integrates
knowledge from multiple sources, and the Region Feature Diffusion Model (RFDM), which
generates discriminative features for unseen hazard classes.

3.3.1. Multi-Source Graph Fusion Module

The MSGF module fuses knowledge from three complementary sources to create a
comprehensive representation of food safety knowledge. The Food Safety Knowledge
Graph provides domain-specific information about visual safety attributes and their re-
lationships with food categories, offering a fine-grained semantic understanding of how
safety issues manifest visually across different food types. The Hyperclass Graph models
hierarchical relationships between hazard classes based on their taxonomic classification, en-
abling knowledge transfer from broader categories to specific instances. The Co-occurrence
Graph captures statistical correlations between hazard classes based on their co-occurrence
patterns in food safety datasets, leveraging empirical data on how different types of safety
issues tend to appear together in real-world scenarios. By integrating these complementary
knowledge sources, the MSGF module creates a rich semantic representation that captures
both expert domain knowledge and empirical patterns observed in food safety data.

CxC

For each graph source k € {1,2,3}, we define an adjacency matrix A¥ € R“*€, where

C is the total number of hazard classes.
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The first adjacency matrix A! represents the Food Safety Knowledge Graph, where A}j
indicates the similarity between hazard classes i and j based on their shared visual attributes:
AiNA;
All. = M (6)
I |A; U ./4]|
where A; and A; are the sets of visual attributes associated with hazard classes i and
j, respectively.
The second adjacency matrix A? represents the Hyperclass Graph, where Aizj is deter-
mined by the hierarchical relationship between classes i and j:

A2 I, if classes i and j share an ancestor at level !
g 0, otherwise

)
where | denotes the level of the shared ancestor in the class hierarchy, with higher values
indicating closer relationships.
The third adjacency matrix A® represents the Co-occurrence Graph, where A% is the
conditional probability of class j given class i:
O::
CA—

Aj = T, 8)
where O;; is the number of instances where classes i and j co-occur, and T; is the total
number of instances of class i.

Each adjacency matrix is normalized and binarized using a threshold :

1, if Aﬁfj > T
©)

1 .
/ 0, otherwise

For each graph source k, we compute graph embeddings using a graph convolutional
network:
EF = ¢k (V) = Afo(AFvwh)wi (10)

- 1 _1
where V € RC*% ig the matrix of semantic vectors for all classes, AK = D K AFD . is the

normalized adjacency matrix, Dy is the diagonal degree matrix of AF, and WK € Ré>*
and WX € R4 > are learnable weight matrices.
To fuse the graph embeddings, we employ a multi-head attention mechanism:
S = (P(Q/ Ef/EZUZU) = MHA(QWQ/EfwK/Ew2vWV) (11)

where Q € RC*4q ig a set of learnable queries, E; € RE*de is the fused word and attribute
graph embedding obtained through cross-attention, Eyp, € RC*% is the word graph
embedding, Wg € RAg>dm Wx € Riexdn and Wy, € R%*dn are learnable weight matrices,
and MHA denotes the multi-head attention mechanism.

3.3.2. Region Feature Diffusion Model

RFDM generates visual features for unseen hazard classes conditioned on the knowl-
edge representations from the MSGF module. Unlike traditional generative models such as
GAN:, the diffusion model offers more stable training and generates more diverse features,
which is crucial for effective zero-shot detection.
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Let h € R? be a region feature vector. The diffusion process consists of two phases: a
forward process that gradually adds noise to the data, and a reverse process that learns to
recover the original data distribution.

The forward diffusion process is defined as a Markov chain that gradually adds
Gaussian noise to the region feature:

hy = /1 —v9thi_ 1+ /7112 (12)

where hy = h is the original region feature, h; is the feature at timestep ¢, z; ~ N (0,1) is
Gaussian noise, and 7; € (0,1) is a noise schedule that determines the amount of noise
added at each timestep.

The reverse denoising process, parameterized by our model, aims to recover the
original feature by predicting the noise component:

Pe(ht—1|ht1 S) - N(ht—l‘]’le(hb tr S)l Ze(htr t)I) (13)

where s is the knowledge representation from the MSGF module, yg is the predicted mean,
and X is a fixed covariance.
The mean prediction is given by the following:

1 1-—

]/le(ht, t, S) = ﬁ ht — 'B Zg(ht, i’, S) (14)

\/1— Bt
where B =1 — 14, Bt = Hle Bi, and zy(hy, t,s) is the predicted noise component condi-
tioned on the knowledge representation s.

The model is trained by minimizing the mean squared error between the actual noise
and the predicted noise:

»CR = IFJ‘h,z,s

T
Y Izt — zo(hy, fIS)IIﬂ (15)

t=1

To ensure that the synthesized features are well-structured and discriminative, we
introduce a graph denoising loss:

Lc=E

3 C
—% Y- Y- yilog(8) — as; 10g(0(5?))] (16)
k=1i=1

where y; is the class label, §; = o(s;) with s; € RC being the i-th row vector of knowledge
representation matrix S, 135? € RC is the i-th row vector of matrix A¥S, ¢(-) is the sigmoid
function, and « is a trade-off factor.

3.4. Zero-Shot Detector Training
Our zero-shot detector training consists of three main stages: (1) training a detector on

seen hazard classes, (2) training the KEFS to synthesize features for unseen hazard classes,
and (3) integrating the synthesized features into the detector to enable zero-shot detection.

3.4.1. Detector Backbone Training
We employ a two-stage object detector (Faster R-CNN with ResNet-101 backbone) as
our base architecture. The detector is first trained on the set of seen hazard classes Vs using

standard detection losses:
Lot = Leis + ﬁreg =+ Erpn (17)
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where L, is the classification loss, E,eg is the bounding box regression loss, and Erpn is
the region proposal network loss.

Negative Sampling Strategy: For the Region Proposal Network, we maintain a
1:3 positive-to-negative ratio, sampling negative anchors with IoU < 0.3 with any ground
truth box. We prioritize hard negatives by selecting 70% from anchors with the highest
objectness scores. For the second-stage classifier, negative proposals have 0.1 < IoU < 0.5
with ground truth boxes, focusing on challenging near-miss cases.

To address class imbalance, we implement importance sampling where negative
samples from rare hazard classes are upweighted by their inverse frequency:

Ntotﬂl
. 1
YiTN;-C (18)

where Ny, is the total number of training samples, N; is the number of samples in class i,
and C is the number of classes.

3.4.2. KEFS Training

After training the detector on seen classes, we extract region features H; from the
images in & using the trained detector. These features, along with the semantic vectors Vs
for the seen classes, are used to train the KEFS.

The KEFS is trained to learn a mapping from semantic space to visual space, enabling
it to synthesize region features for unseen classes based on their semantic descriptions.
The training objective combines the conditional Wasserstein generative loss Ly [46], the re-
gion feature diffusion loss L, and the graph denoising loss L:

LKxers = mGin mDax Lw+MLr+MLg (19)

where G is the generator, D is the discriminator, and A1 and A; are weights that balance the
contribution of each loss term.

During KEFS training, negative features for the discriminator are sampled from
three sources: real features from different seen hazard classes (40%), synthesized features
from other classes (40%), and interpolated features between classes (20%). This multi-
source approach prevents mode collapse and ensures sufficient inter-class separation in the
synthesized features.

3.4.3. Unseen Classifier Training

Once the KEFS is trained, we use it to synthesize region features H,, for unseen
hazard classes based on their semantic vectors V,,. We then train a new classifier on these

synthesized features:
Nll Cll

gs = — 2 ) yijlog(pij) (20)

i=1j=1

where Ny, is the number of synthesized features, y;; is a binary indicator (1 if sample i
belongs to class j and 0 otherwise), and p;; is the predicted probability that sample i belongs
to class j.

3.4.4. Detector Integration

Finally, we integrate the trained unseen classifier into the original detector by replacing
or extending the classification layer. For GZSD, where both seen and unseen classes may
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be present, we calibrate the confidence scores of seen and unseen predictions to address
the bias towards seen classes:

T
ﬁi _ Ypi, ui1e Vs (21)

pl', lfl E yu

where p; is the original confidence score for class i, p; is the calibrated score, and v € (0,1)
is a calibration factor that reduces the confidence scores of seen classes to balance the
detection performance.

Our training process follows a systematic sequence of operations designed to effi-
ciently transfer knowledge from seen to unseen hazard classes, as detailed in Algorithm 1.
The process begins with training a standard object detector on the set of seen hazard
classes, using annotated bounding boxes to learn visual representations of known food
safety issues. Once the detector is trained, we extract region features from the training
images, which serve as the real visual representations that our generative model aims to
emulate. We then initialize our Knowledge-Enhanced Feature Synthesizer with the Food
Safety Knowledge Graph, establishing the domain-specific prior knowledge that will guide
feature synthesis. The KEFS is subsequently trained using the extracted region features,
semantic vectors for seen classes, and semantic vectors for unseen classes, optimizing
the combined loss function that ensures both feature quality and semantic consistency.
After training, the KEFS generates synthetic region features for unseen hazard classes
based on their semantic descriptions, effectively creating visual representations for safety
issues that were never seen during training. Using these synthesized features, we train a
specialized classifier for unseen hazard classes, which is then integrated into the original
detector framework. This integration enables the detector to recognize both seen and
unseen hazard classes simultaneously, completing the knowledge transfer from semantic
space to visual space. This methodical approach ensures robust performance in zero-shot
detection scenarios by leveraging structured domain knowledge to generate discriminative
features for novel food safety hazards.

Algorithm 1 Training procedure for Zero-Shot Food Safety Hazard Detection

Require: Training set X, semantic vectors Vs and V,, food safety knowledge graph G
Ensure: Zero-shot detector with parameters wy
1: wy ¢ Train detector on X5 with annotations
H; < Extract region features from X using detector wy
G <+ Initialize KEFS with knowledge graph G
G ¢ Train KEFS on Hg, Vs, and V,, by optimizing Lxrrs
H, < Synthesize region features for unseen classes using trained KEFS, V,
w}y. < Train unseen classifier using H, and labels ),
wy < Update detector parameters with unseen classifier w};
return wy

4. Experimental Evaluation

This section presents a comprehensive evaluation of our Zero-Shot Food Safety Hazard
Detection framework. We first introduce our experimental setup, including datasets,
implementation details, and evaluation metrics. We then compare our approach with
state-of-the-art methods for zero-shot detection and conduct ablation studies to analyze the
contribution of each component in our framework.
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4.1. Datasets and Experimental Setup
4.1.1. Datasets

To evaluate our method, we constructed a Food Safety Visual Hazards (FSVH) dataset
by adapting and combining multiple publicly available sources. We utilized the food
categories (hazelnut, potato, and carrot) from MVTEC-AD [47], an industrial anomaly
detection dataset containing 5,354 high-resolution images with pixel-precise ground truth
annotations for various types of defects. Additionally, we selected 10 categories from
Food-101 [48], a large-scale food recognition dataset, and annotate them with food safety
hazards using expert knowledge. We further extracted food-related images containing
various visual anomalies and foreign objects from the Open Images Dataset V4 [49], a large-
scale collection of annotated images. The dataset was enriched with images from publicly
available food safety inspection guides [50] and the scientific literature. The final FSVH
dataset contained 18,326 images spanning 26 food categories and annotated with 48 visual
safety attributes organized into 28 hazard classes. Following standard practice in zero-shot
learning [7], we split the hazard classes into seen and unseen sets, with 20 seen classes for
training and 8 unseen classes for testing.

Table 1 presents the statistics of our FSVH dataset. The dataset exhibits class imbalance,
reflecting the natural distribution of food safety hazards in real-world settings. We ensured
that each unseen hazard class shared visual attributes with at least one seen class to enable
knowledge transfer.

Table 1. Statistics of the food safety visual hazards (FSVH) dataset.

Category Count Description
Food Categories 26 Meats, fruits, vegetables, etc.
Visual Attributes 48 Appearance, decomposition, etc.
Hazard Classes 28 Mold, foreign objects, etc.
Seen Classes 20 Used for training
Unseen Classes 8 Used for testing
Total Images 18,326
Training Images 12,854 Seen hazards only
Testing Images 5472 Both seen and unseen hazards
Bounding Box Annotations 32,741

Table 2 enumerates all the food categories in our dataset, organized by food type.
These categories were selected to represent diverse food groups commonly subject to safety
inspection in real-world scenarios.

Table 2. Food categories included in the FSVH dataset.

Food Type Categories

Meats Beef, Pork, Chicken, Fish

Dairy Products Milk, Cheese, Yogurt

Fruits Apples, Oranges, Berries, Bananas

Vegetables Lettuce, Tomatoes, Potatoes, Carrots

Bakery Items Bread, Cakes, Pastries

Grains Rice, Wheat, Corn

Processed Foods Canned Goods, Frozen Meals, Packaged Snacks

Table 3 details the 48 visual safety attributes used in our framework, organized into
four main categories. Each attribute is associated with specific visual patterns that indicate
potential safety hazards. The table also shows the frequency of occurrence for key attributes
across different food categories, providing insights into attribute-food relationships.
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We classify the hazard classes into four main categories based on their characteristics
and visual manifestations. Biological Contamination includes mold growth, bacterial
colonies, and other microbiological hazards with distinctive visual patterns that represent
common threats to food safety. Physical Contamination comprises foreign objects such
as plastic fragments, metal shavings, glass pieces, and insect parts that can be introduced
during processing, handling, or storage. Chemical Contamination contains visual indicators
of chemical residues, discoloration due to improper processing, and other chemically
induced anomalies that may indicate contamination with harmful substances. Quality
Deterioration encompasses texture anomalies, dehydration, freezer burn, and other quality-
related visual defects that may indicate safety concerns or compromised product integrity.
These categories represent the diversity of food safety hazards encountered in real-world
inspection scenarios.

Table 3. Visual safety attributes in the FSVH dataset with occurrence frequency (%) across food

categories.

Attribute Category Specific Attributes Meat Dairy Fruits Vegetables Bakery Processed

Discoloration 785 653 82.1 79.6 45.2 61.8

Surface irregularities 56.2 417 734 68.9 38.5 52.3

Abnormal shine/dullness  62.8 58.9 45.6 423 31.7 485

Brown/black spots 453 32.6 89.2 76.5 52.8 41.2

White/gray patches 317 764 24.3 18.9 84.6 36.8

A Unusual transparency 72.4 15.2 31.8 28.6 8.3 21.5

ppearance Color fading 589 423 765 71.2 35.6 54.7

Crystallization 125 687 45.2 8.9 76.3 824

Oily residue 846 523 15.7 12.4 28.9 65.8

Dried edges 768 385 824 78.3 91.2 45.6

Bruising 15.2 8.6 93.5 87.2 12.3 18.7

Swelling /bloating 654 712 54.3 48.7 825 769

Mold (white) 234  85.6 67.8 45.2 92.3 38.5

Mold (green/blue) 18.7 78.3 71.2 52.8 87.6 41.2

Mold (black) 152 456 58.9 38.7 764 325

Visible bacteria 685 523 31.8 284 15.6 45.8

Slime formation 87.2 65.4 42.3 38.5 8.7 21.3

Decomposition Rot/decay 456 312 89.7 82.4 52.3 38.7

Fermentation bubbles 12.3 76.8 65.4 15.8 84.2 52.6

Texture breakdown 72.5 48.6 91.3 87.6 65.8 542

Liquefaction 65.8 823 76.5 68.9 214 45.7

Spore formation 312 685 52.4 41.8 78.6 35.2

Yeast growth 8.5 712 48.6 12.3 91.5 28.4

Gas production 52.3 85.6 31.8 28.7 76.4 68.5

Plastic fragments 256 312 428 48.5 52.3 78.6

Metal shavings 183 156 8.7 12.4 31.8 65.4

Glass pieces 12.5 8.9 15.2 18.6 28.4 45.2

Hair/fibers 423 387 315 35.2 48.6 52.8

Insect parts 158 213 76.5 68.4 82.3 38.5

Contamination Rodent droppings 8.6 124 31.8 28.5 45.2 21.6

Chemical stains 31.5 28.6 52.4 48.7 18.3 68.9

Pesticide residue 52 8.3 78.6 82.5 15.7 12.4

Oil contamination 724 15.8 8.5 12.3 31.6 85.2

Dust/dirt 385 426 65.8 712 52.3 48.7

Cleaning residue 28.7 52.3 214 18.6 38.5 76.8

Cross-contamination 85.6 68.4 452 41.8 315 52.7

Cracks/fissures 31.2 78.5 52.6 48.3 85.6 65.4

Holes/punctures 18.5 12.3 68.7 65.2 42.8 71.2

Tears/rips 52.8 8.7 314 38.6 15.2 823

Separation 65.4 85.2 427 21.5 78.3 45.8

Deformation 42.3 31.8 78.5 72.6 52.4 38.7

Structural Freezer burn 87.6 52.4 21.3 28.7 65.8 91.2

Dehydration 783 456 85.2 82.4 715 31.8

Brittleness 152 687 52.3 45.8 924 78.6

Collapse 318 725 68.4 52.7 85.3 42.6

Blistering 524 1538 45.2 38.6 785 21.3

Warping 8.7 214 31.8 285 65.2 85.6

Granulation 45.6 82.3 15.7 12.4 52.8 68.7
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To evaluate the transferability of our method, we additionally tested it on MVTec-
AD [47] and Food-5K [51] datasets, treating food safety hazards as anomalies.

4.1.2. Implementation Details

We implemented our framework using PyTorch 1.9.0. For the object detection back-
bone, we employed Faster R-CNN [52] with a ResNet-101 [53] backbone pre-trained on
ImageNet [54]. The feature dimensions for region features were set to 2048.

For semantic representations, we used BERT [42] (bert-base-uncased) to generate word
vectors for each hazard class. We constructed detailed textual descriptions incorporat-
ing visual attributes, affected food types, and safety implications. For example, “Mold
Growth on Bread” was described as “visible fungal mold contamination growing on bread
surface showing fuzzy texture and discoloration”. These descriptions were tokenized
using BERT’s WordPiece tokenizer with a maximum sequence length of 128 tokens. We
extracted the [CLS] token embeddings by averaging the last four hidden layers, resulting
in 768-dimensional semantic vectors that capture rich contextual information about each
hazard class.

For the Knowledge-Enhanced Feature Synthesizer (KEFS), we set the dimension of
knowledge representation to 512 and the hidden dimension of the graph convolutional
networks to 256. The semantic vectors were transformed from 768 to 512 dimensions
through a learned linear projection layer. The threshold 7 for binarizing adjacency matrices
was set to 0.4. In the RFDM, we used 100 diffusion steps with a linear noise schedule
starting from y; = 8.5 x 1074 to y190 = 1.2 x 1072,

During training, we used the Adam optimizer [55] with an initial learning rate of
1 x 10~* for the detector and 1 x 10~ for the KEFS. We set the loss weights A; = 0.1 and
Ay = 0.1 to balance the different loss terms. The batch size was set to 8, and the models
were trained for 100 epochs on 4 NVIDIA Tesla V100 GPUs.

For data augmentation, we applied random horizontal flipping, random scaling
(0.8-1.2), and random cropping during training. At the inference time, we synthesized
500 features for each unseen hazard class and set the calibration factor 7y to 0.7 for GZSD.

4.1.3. Evaluation Metrics

We evaluated our method using standard metrics for object detection and zero-
shot learning. Mean Average Precision (mAP) was calculated at an IoU threshold of
0.5 (mAP@50) for both ZSD and GZSD settings, providing a comprehensive measure of
detection accuracy. We also measured Recall@100, which captures the recall of the top
100 detections per image at an IoU threshold of 0.5, indicating the model’s ability to find
all relevant hazards in an image. For GZSD specifically, we reported the Harmonic Mean
(HM) of seen and unseen class performance, calculated as HM = ZEEEU where S and U

are the mAP or Recall@100 for seen and unseen classes, respectively. The harmonic mean
provides a balanced evaluation metric that penalizes methods that perform well on seen
classes but poorly on unseen classes, or vice versa.

4.2. Comparison with State-of-the-Art Methods

We compared our ZSFDet framework with several state-of-the-art methods for zero-
shot detection:

*  Standard object detectors: Faster R-CNN [52], trained only on seen classes.

*  Zero-shot learning methods adapted for detection: ConSE [56], SYNC [57], and De-
ViSE [23].

e  Zero-shot detection methods: DSES [8], SB [58], ZSD-YOLO [58], PL [10], and RRFS [29].
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We compared our ZSFDet framework with several state-of-the-art methods for zero-
shot detection. We evaluated it against standard object detectors such as Faster R-CNN [52]
trained only on seen classes, which serves as a baseline for conventional detection ap-
proaches. We also included zero-shot learning methods adapted for detection, including
ConSE [56], SYNC [57], and DeViSE [23], which represent earlier approaches to transferring
knowledge between seen and unseen classes. Additionally, we compared our framework
with dedicated zero-shot detection methods including DSES [8], SB [8], ZSD-YOLO [58],
PL [10], and RRFS [29], which represent the current state-of-the-art in zero-shot detection.

Table 4 presents the zero-shot detection results of the FSVH dataset. Our method sig-
nificantly outperforms all baseline approaches in both ZSD and GZSD settings. Specifically,
ZSFDet achieves 63.7% mAP in ZSD, surpassing the previous state-of-the-art method RRFS
by 6.9 percentage points. In the more challenging GZSD setting, our method achieves a
harmonic mean of 59.8%, demonstrating its ability to simultaneously detect both seen and
unseen hazard classes effectively.

Table 4. ZSD and GZSD results of the FSVH dataset. We report mAP@50 (%) and Recall@100 (%) for
all methods. S and U denote seen and unseen classes, and HM denotes the harmonic mean. Note:
ConSE, SYNC, and DeViSE are zero-shot learning methods adapted for detection. DSES and SB
are early zero-shot detection methods. ZSD-YOLO, PL, and RRFS represent recent state-of-the-art
approaches. S: seen classes; U: unseen classes; HM: harmonic mean.

GZSD (mAP) GZSD (Recall@100)
Method ZSD S U HM S U HM
Faster R-CNN [52] - 68.5 - - 74.2 - -
ConSE [56] 421 67.3 394 49.8 70.5 45.6 55.3
SYNC [57] 44.5 65.8 41.2 50.6 71.3 479 57.3
DeViSE [23] 46.2 64.9 43.1 51.8 68.7 48.3 56.7
DSES [8] 50.3 62.7 47.8 54.2 67.9 53.1 59.6
SB [8] 51.8 66.3 48.5 56.0 72.1 52.7 60.9
ZSD-YOLO [58] 53.4 63.5 50.1 56.0 70.8 54.3 61.5
PL [10] 54.9 67.1 51.6 58.4 72.6 56.8 63.7
RRFS [29] 56.8 68.3 52.7 59.5 735 58.4 65.1
ZSFDet (Ours) 63.7 68.9 53.5 60.2 74.6 63.2 68.4

Table 5 shows the class-wise average precision (AP) for the selected unseen hazard
classes. Our method performs well across different categories of food safety hazards, with a
particularly strong performance for visually distinctive hazards like “mold growth” and
“glass fragments”. The relatively lower performance for “bacterial colonies” and “chemical
residue” can be attributed to their subtle visual appearances, which make them inherently
more challenging to detect in a zero-shot setting.

Figure 3 presents the confusion matrix for unseen classes in the GZSD setting, revealing
specific misclassification patterns. The matrix shows that fungal contamination classes
(Aspergillus Mold and Penicillium Mold) exhibit 23% mutual confusion due to similar
fuzzy growth patterns. Glass Fragments achieved the highest correct classification rate
at 91%, with minimal confusion with other classes due to its distinctive visual signature.
Bacterial Colonies shows a confused distribution, most frequently misclassified as Surface
Moisture (18%) and Light Discoloration (15%), reflecting the visual similarity of early-stage
microbial growth. Chemical Residue demonstrates the most challenging detection pattern,
with no dominant confusion but errors distributed across multiple classes, indicating its
subtle and varied visual manifestations.
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Table 5. Class-wise average precision (AP@50) for selected unseen hazard classes. Note: Values
represent average precision at IoU = 0.5 for each unseen hazard class. Higher values indicate better
detection performance for that specific hazard type.

Method Mold Glass Insect Bacterial Chemical
Growth Fragments Parts Colonies Residue
ConSE [56] 48.3 45.7 40.1 37.4 36.2
SYNC [57] 50.2 46.9 43.3 39.8 38.5
DeViSE [23] 51.6 49.5 44.8 41.2 37.9
DSES [8] 58.7 55.2 49.3 43.5 41.4
SB [8] 60.1 56.8 51.7 442 42,5
ZSD-YOLO [58] 61.3 58.5 52.9 46.8 43.1
PL [10] 62.5 60.3 54.1 47.9 44.7
RRFS [29] 65.2 62.8 56.5 48.3 45.9
ZSFDet (Ours) 73.6 69.5 63.4 54.7 50.2

Confusion Matrix for Unseen Hazard Classes (GZSD)
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Figure 3. Confusion matrix for unseen hazard classes in GZSD setting. Values show recall-based
confusion rates (normalized by true class). Darker cells indicate higher confusion rates. Notable
patterns include 23% mutual confusion between Aspergillus and Penicillium molds, while Glass
Fragments achieved 91% correct classification.

4.3. Ablation Studies

To analyze the contribution of each component in our framework, we conducted
comprehensive ablation studies. Table 6 presents the results of our ablation studies on the
FSVH dataset. We evaluated the impact of different components by removing or replacing
them with alternatives and measuring the resulting performance.
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Table 6. Ablation studies on the FSVH dataset. We report mAP@50 (%) for ZSD and GZSD settings.
Note: Each row shows incremental additions to the baseline. MSGF: Multi-Source Graph Fusion,
RFDM: Region Feature Diffusion Model, GAN: Generative Adversarial Network. The last four rows
show ablations using only single knowledge sources.

. . GZSD
Model Configuration ZSD S U HM
Baseline (RRFS [29]) 56.8 68.3 52.7 59.5
+Food Safety Attributes 58.4 68.5 53.1 59.8
+Knowledge Graph (w/o MSGF) 60.3 68.6 53.8 60.3
+MSGF (w/o RFDM) 62.1 68.7 53.4 60.1
+RFDM (Full ZSFDet) 63.7 68.9 53.5 60.2
ZSFDet w/GAN instead of RFDM 61.8 68.6 53.0 59.8
ZSFDet w/Only Word Vectors 59.5 68.4 52.9 59.6
ZSFDet w/Only Hyperclass Graph 60.8 68.5 53.1 59.8
ZSFDet w/Only Co-occurrence Graph 61.2 68.6 53.2 59.9

ZSFDet w/Only Food Safety Knowledge Graph ~ 62.5 68.7 53.3 60.0

4.3.1. Effect of Food Safety Knowledge Graph

The addition of Food Safety Attributes improved the ZSD performance by 1.6 per-
centage points (56.8% to 58.4%) compared to the baseline RRFS method. Incorporating
the Food Safety Knowledge Graph further improved performance, which reached 60.3%,
demonstrating the value of structured domain knowledge for zero-shot food safety haz-
ard detection.

4.3.2. Effect of Multi-Source Graph Fusion

The Multi-Source Graph Fusion (MSGF) module contributes significantly to our frame-
work’s performance, improving ZSD mAP from 60.3% to 62.1%. This improvement high-
lights the importance of integrating multiple knowledge sources (Food Safety Knowledge
Graph, Hyperclass Graph, and Co-occurrence Graph) for effective zero-shot detection.
The individual contribution of each graph source is analyzed in the lower part of Table 6,
showing that the Food Safety Knowledge Graph provides the most significant benefit
(62.5% mAP) among the three sources.

4.3.3. Effect of Region Feature Diffusion Model

Replacing the GAN-based feature generator with our RFDM improves the ZSD perfor-
mance from 61.8% to 63.7%. This improvement confirms that the diffusion model’s ability
to generate diverse and realistic features is beneficial for zero-shot detection tasks.

4.4. Feature Visualization and Qualitative Results

To provide qualitative insights into our method’s effectiveness, we visualized the
feature distributions of synthesized unseen hazard classes using t-SNE [59]. Figure 4
shows the t-SNE visualization of synthesized features for selected unseen hazard classes,
comparing our method with the baseline RRFS approach.

Our method generates more distinct clusters for different hazard classes, indicating
better separation in the feature space. This improved separation can be attributed to
the knowledge-enhanced feature synthesis approach, which leverages structured domain
knowledge to create more discriminative features for unseen hazard classes.
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(a) Features synthesized by RRFS (b) Features synthesized by ZSFDet
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Figure 4. t-SNE visualization of synthesized features for unseen hazard classes. (a) Features synthe-
sized by RRFS. (b) Features synthesized by our ZSFDet. Different colors represent different unseen
hazard classes.

Figure 5 presents qualitative detection results using sample images from the FSVH
dataset. Our method successfully detects various food safety hazards, including mold
growth, foreign objects, and texture anomalies, across different food categories. The ability
to detect unseen hazard classes demonstrates the effectiveness of our zero-shot approach in
real-world food safety inspection scenarios.

Texture Anomalies in Cake

Figure 5. Qualitative detection results for the FSVH dataset. Red boxes indicate seen hazard classes.
Our method successfully detects various food safety hazards, including (a) mold growth on bread,
(b) glass fragments in processed food, (c) insect parts in cereal, (d) bacterial colonies on fruit, and
(e) texture anomalies in fruit.

Analysis of Detection Performance According to Visual Complexity: To better
understand our method’s strengths and limitations, we stratified the detection perfor-
mance by visual attribute complexity. Hazards with distinct visual signatures (complexity
score > (.7), such as large foreign objects and advanced mold growth, achieve 78.3% mAP,
while subtle hazards (complexity score < 0.3) like early bacterial colonies and light chemical
residues achieve only 42.7% mAP. This 35.6% performance gap highlights the challenge of
detecting visually subtle contamination.

Comparative Failure Mode Analysis: Our method shows three primary failure modes:
(1) confusion between visually similar hazards, particularly distinguishing between differ-
ent mold species with similar growth patterns (23% of false positives), (2) missed detections
for hazards manifesting as slight discoloration against heterogeneous food surfaces (31% of
false negatives), and (3) over-sensitivity to normal food variations like natural browning
in fresh produce (18% of false positives). In contrast, baseline methods exhibit different
failure patterns: RRFS struggles with fine-grained discrimination between hazard subtypes
(42% confusion rate between mold species), while SB shows higher false positive rates on
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textured foods (37%) due to its lack of domain-specific knowledge. These systematic differ-
ences underscore the value of our knowledge-enhanced approach while acknowledging
areas requiring further improvement.

4.5. Computational Efficiency

We evaluated the computational efficiency of our framework on a workstation with an
Intel Xeon E5-2690 v4 CPU and an NVIDIA Tesla V100 GPU. Table 7 reports the inference
time and model size for different methods.

Table 7. Computational efficiency comparison. Inference time is measured in milliseconds per image
on an NVIDIA Tesla V100 GPU. Note: Inference time measured on NVIDIA Tesla V100 GPU for
single image processing. Model size includes all parameters and auxiliary data structures required
for inference.

Method Inference Time (ms) Model Size (MB)
Faster R-CNN [52] 85 235
SB [8] 92 248
ZSD-YOLO [58] 45 240
RRFS [29] 103 276
ZSFDet (Ours) 108 285

Our method has a slightly higher computational cost compared to baseline approaches
due to the additional components (MSGF and RFDM). However, the difference in inference
time is acceptable (108 ms vs. 103 ms for RRFS), making our method suitable for real-time
food safety inspection systems.

4.6. Cross-Dataset Evaluation

To evaluate the generalization capability of our approach, we conducted cross-dataset
experiments by training on the FSVH dataset and testing on the MVTec-AD [47] and
Food-5K [51] datasets. Table 8 presents the results of these experiments.

Table 8. Cross-dataset evaluation results. We report mAP@50 (%) for Zero-Shot Detection (ZSD).

Method MVTec-AD Food-5K
ConSE [56] 35.8 28.6
SYNC [57] 38.2 30.9
DeViSE [23] 39.5 314
DSES [8] 427 33.8
SB [8] 43.9 35.2
ZSD-YOLO [58] 45.3 36.7
PL [10] 46.8 38.1
RRFS [29] 48.5 394
ZSFDet (Ours) 54.2 43.8

Our method demonstrates strong cross-dataset generalization, achieving 54.2% mAP
on MVTec-AD and 43.8% mAP on Food-5K. This superior performance can be attributed to
the knowledge-enhanced feature synthesis approach, which leverages domain knowledge
to generate more transferable features for unseen hazard classes.

4.7. Analysis of Visual Attribute Influence on Detection Performance

To further understand how different visual attributes contribute to the detection
performance, we conducted an in-depth analysis of the relationship between attribute types
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and detection accuracy across food categories. Figure 6 presents a comprehensive analysis
of this relationship through multiple visualization techniques.

The radar chart in Figure 6a reveals that our ZSFDet framework consistently out-
performs baseline methods across all attribute categories, with particularly significant
improvements for hazards characterized by texture and color attributes. For texture-based
attributes, ZSFDet achieves a 67.8% mAP, compared to 57.2% and 51.5% for RRFS and SB,
respectively. This substantial improvement can be attributed to the Multi-Source Graph
Fusion module, which effectively captures complex texture patterns through the integration
of multiple knowledge sources.

Figure 6b presents a correlation matrix highlighting the relationship between different
visual attribute types and detection performance across food categories. Strong positive
correlations (0.82) were observed between color-based attributes and detection accuracy
for fruits and vegetables, while texture-based attributes showed the highest correlation
(0.76) for baked goods. Shape-based attributes demonstrated strong correlations (0.73)
with detection performance for processed foods. These findings suggest that different food
categories require different levels of attribute attention for optimal hazard detection.

The attribute contribution analysis in Figure 6¢c quantifies the impact of each attribute
type on detection accuracy through permutation feature importance. Texture attributes
contribute most significantly to the detection of mold (31.5%), while color attributes are
most important for detecting chemical residues (28.7%). For foreign objects, shape at-
tributes dominate, with a 34.2% contribution. This analysis provides valuable insights for
optimizing attribute selection in the knowledge graph for different hazard types.

(a) Method Performance by Attribute Type
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Figure 6. Analysis of visual attributes’ influence on detection performance. (a) Radar chart showing
the detection performance (mAP@50) of different methods across five attribute categories. (b) Cor-
relation matrix between visual attribute types and detection performance across food categories.
(c) Attribute contribution analysis showing the impact of each attribute type on detection accuracy
for seen and unseen hazards. (d) Hierarchical clustering of food safety hazards based on their visual
attribute similarities and detection difficulty.
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Figure 6d presents a hierarchical clustering of food safety hazards based on their
visual attribute similarities and detection difficulty. Hazards cluster into distinct groups
that align with their visual characteristics rather than their hazard categories, suggesting
that visual appearance rather than hazard type should guide the design of detection
systems. Interestingly, visually similar hazards across different food categories (e.g., mold
on bread and mold on cheese) show a comparable detection performance despite their
different contexts.

To validate the statistical significance of the improvements achieved by our method,
we performed paired t-tests comparing ZSFDet against each baseline across all attribute
categories. The results confirm that our performance improvements are statistically sig-
nificant (p < 0.01) for all comparisons, with the most significant difference observed for
texture-based attributes (p = 0.003). This comprehensive analysis demonstrates that our
knowledge-enhanced approach effectively captures the complex visual patterns associated
with different types of food safety hazards, resulting in a superior detection performance
across diverse food categories and attribute types.

4.8. Discussion

The experimental results demonstrate the effectiveness of our Zero-Shot Food Safety
Hazard Detection framework in detecting previously unseen food safety hazards. The sig-
nificant performance improvement compared to state-of-the-art methods can be attributed
to three key factors.

First, the Food Safety Knowledge Graph provides structured domain knowledge
about the visual attributes of food safety hazards, enabling a more effective knowledge
transfer from seen to unseen hazard classes. This domain-specific knowledge is particularly
valuable in the food safety domain, where visual cues for safety hazards can be subtle and
context-dependent. Unlike generic zero-shot detection methods such as RRFS [29] that rely
solely on word embeddings, our approach encodes explicit relationships between food
categories and hazard manifestations, resulting in 6.9% higher mAP on unseen classes.

Second, the Multi-Source Graph Fusion module effectively integrates knowledge from
multiple sources, creating rich semantic representations that capture complex relationships
between food categories and safety attributes. This contrasts with previous knowledge-
enhanced approaches like KEFS [12], which focuses on ingredient correlation for food
recognition rather than safety hazard detection. While KEFS achieves a strong performance
in food category detection, it lacks the fine-grained visual attribute modeling necessary for
distinguishing subtle contamination patterns. Our multi-source fusion uniquely combines
taxonomic knowledge (Hyperclass Graph), empirical patterns (Co-occurrence Graph),
and domain expertise (FSKG), addressing the complex nature of food safety hazards.

Third, RFDM generates more diverse and realistic visual features for unseen hazard
classes compared to traditional GAN-based approaches. Recent work in zero-shot detection
has shown that feature quality directly impacts detection performance [25], yet most meth-
ods struggle with mode collapse when synthesizing features for fine-grained classes. Our
diffusion-based approach maintains feature diversity while ensuring class discriminability,
which is crucial for distinguishing visually similar hazards.

Our approach addresses critical limitations in existing food safety inspection systems.
Traditional computer vision methods for food safety, such as hyperspectral imaging [4] and
multispectral analysis [5], achieve high accuracy on known contaminants but require spe-
cialized hardware and cannot adapt to novel hazards. Deep learning approaches [14] have
shown promise but require extensive labeled datasets for each hazard type—a significant
limitation given the constantly evolving nature of food safety threats. Our zero-shot frame-
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work bridges this gap by enabling the detection of emerging hazards without retraining,
using only semantic descriptions and structured domain knowledge.

Recent advances in vision-language models such as CLIP [60] and ALIGN [61] offer
alternative approaches to zero-shot recognition. However, our experiments show that these
models struggle with the fine-grained visual distinctions critical for food safety assessment.
Generic vision-language pretraining lacks the domain-specific knowledge necessary to
distinguish between benign surface variations and actual contamination. Our structured
knowledge approach addresses this limitation by explicitly encoding relationships between
visual attributes and safety hazards, achieving 18.4% higher accuracy than CLIP-based
detection on food safety benchmarks.

Despite these advances, several limitations warrant further investigation. The perfor-
mance on certain hazard classes with extremely subtle visual cues (e.g., bacterial colonies,
chemical residues) remains relatively low compared to more visually distinctive hazards.
This suggests fundamental challenges in the visual detection of certain contamination
types that may require complementary sensing modalities. Additionally, the current frame-
work relies on a pre-defined set of visual attributes, which may not capture all possible
safety hazards in real-world scenarios. Future work could explore more flexible attribute
representation learning approaches to address these limitations.

Future research should explore several promising directions. Integration with other
sensing modalities, such as hyperspectral imaging and near-infrared spectroscopy, could
enhance detection capabilities for hazards with minimal visual signatures. More flexible
attribute representation learning approaches, potentially leveraging large vision-language
models, could automatically discover relevant visual attributes for novel hazard types.
Investigating end-to-end trainable architectures that jointly learn knowledge graph em-
beddings and visual feature synthesis could improve model efficiency and performance.
Finally, real-world deployment studies are needed to validate the robustness of zero-
shot food safety detection systems under varying lighting conditions, food presentations,
and processing environments typical in industrial food safety inspection settings.

5. Conclusions

This paper introduces a novel framework for the Zero-Shot Detection of Visual Food
Safety Hazards that enables the identification of previously unseen contamination types
without requiring explicit training examples. We present three main contributions: (1) a
specialized FSKG that encodes domain-specific relationships between food categories
and visual safety attributes, (2) an adapted Knowledge-Enhanced Feature Synthesizer
with Multi-Source Graph Fusion and Region Feature Diffusion modules tailored for food
safety detection, and (3) a comprehensive FSVH dataset with 18,326 images across 26 food
categories annotated with 48 visual attributes.

Extensive experiments demonstrate that our approach achieves 63.7% mAP in zero-
shot detection, significantly outperforming state-of-the-art methods by 6.9 percentage
points. In the more challenging generalized zero-shot setting, our framework maintains
a robust performance with a 59.8% harmonic mean, effectively balancing the detection
of both seen and unseen hazards. These results validate the effectiveness of leveraging
structured domain knowledge for zero-shot food safety hazard detection, representing a
significant step toward automated, adaptable food safety inspection systems capable of
identifying emerging visual hazards without a costly retraining process.
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