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Abstract

Ensuring consistent quality and safety in agri-food processing is a strategic priority for
firms seeking compliance with international standards such as ISO 9001 and ISO 22000.
Traditional inspection practices in Ecuador’s food industry remain largely destructive,
labor-intensive, and subjective, limiting real-time decision-making. This study developed a
non-destructive, ISO-aligned framework for process-level quality control by integrating
digital (RGB) imaging for surface-level inspection, hyperspectral imaging (HSI) for internal-
quality prediction (e.g., moisture, firmness, and freshness), near-infrared spectroscopy
(NIRS) for compositional and authenticity analysis, and deep learning (DL) models for
automated classification of ripeness, maturity, and defects. Experimental results across
four flagship commodities—bananas, cacao, coffee, and shrimp—achieved classification
accuracies above 88% and ROC AUC values exceeding 0.90, confirming the robustness
of AI-driven, multimodal (RGB–HSI–NIRS) inspection under semi-industrial conveyor
conditions. Beyond technological performance, the findings demonstrate that digital inspec-
tion reinforces ISO principles of evidence-based decision-making, conformity verification,
and traceability, thereby operationalizing the Plan–Do–Check–Act (PDCA) cycle at digital
speed. The study contributes theoretically by advancing the conceptualization of Qual-
ity 4.0 as a socio-technical transformation that embeds AI-driven sensing and analytics
within management standards, and practically by providing a roadmap for Ecuadorian
SMEs to strengthen export competitiveness through automated, real-time, and auditable
quality assurance.

Keywords: digital imaging; hyperspectral imaging; near-infrared spectroscopy (NIRS);
deep learning; artificial intelligence; process-level quality control; ISO standards; Quality
4.0; non-destructive inspection; agri-food industry; Ecuador

1. Introduction
Ensuring the quality and safety of agri-food products has become a central concern

for both global consumers and international markets. For export-oriented economies
such as Ecuador, where bananas, coffee, cacao, and shrimp account for a significant share
of agricultural and aquacultural production, compliance with international quality and
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safety standards is both a regulatory necessity and a competitive advantage. Standards
such as ISO 9001 [1], emphasizing continuous improvement and evidence-based decision-
making, and ISO 22000 [2], which defines food safety management systems, serve as
global benchmarks for companies seeking to access high-value markets. However, tradi-
tional quality control methods—manual inspection, destructive sampling, and laboratory
testing—are time-consuming, costly, and subjective, limiting their ability to provide real-
time assurance and traceable evidence. In this study, the term quality control is used in its
ISO-aligned sense, encompassing inspection as a process-level monitoring activity within
the broader Plan–Do–Check–Act (PDCA) cycle, rather than as a separate or post-process
verification step.

In this context, artificial intelligence (AI) integrated with digital (RGB) imaging, hyper-
spectral imaging (HSI), and near-infrared spectroscopy (NIRS) has emerged as a transfor-
mative pathway for non-destructive, process-level quality assessment. These technologies
combine high-resolution spectral sensing with deep learning (DL) to detect and quantify
attributes invisible to conventional imaging. HSI captures spatial–spectral fingerprints
that reflect internal and external quality parameters such as moisture, pigments, and firm-
ness. At the same time, NIRS provides rapid compositional analysis to support conformity
verification and fraud prevention. Coupled with DL, these tools enable automated in-
spection and generate objective, auditable evidence consistent with ISO-based quality
management principles [3].

Different imaging and spectroscopic techniques are used because each contributes
complementary information. Digital (RGB) imaging captures visible surface characteristics
such as color, shape, and defects; HSI provides spectral–spatial insight into internal quality
attributes; NIRS delivers molecular and compositional data for authenticity verification;
and DL enables intelligent classification, regression, and anomaly detection. Together, these
methods create an ISO-aligned Quality 4.0 framework that operationalizes the principles of
evidence-based decision-making, traceability, and continuous improvement embedded in
ISO 9001 and ISO 22000.

Recent studies confirm that the convergence of HSI, NIRS, and DL has produced
significant advances across the agri-food value chain. In bananas, CNN-based models have
achieved over 88% accuracy in foliar disease detection [4,5] and nearly 90% in ripeness
and quality classification from RGB images [6]. In comparison, HSI approaches have
exceeded 98% by capturing subtle spectral differences. Similar progress is observed in
coffee, where CNN pipelines reached 91.65% accuracy in defect detection [7], and NIRS-
based chemometric models classified post-harvest processing methods with over 90%
accuracy [8], reinforcing traceability in line with ISO 22000. In cacao, object detection models
such as Faster R-CNN and YOLOv8 achieved over 86% precision for pod ripeness under
field conditions [9], while NIR-HSI successfully discriminated cocoa hybrids with high
accuracy [10], supporting varietal authentication in premium Nacional cacao exports. For
shrimp, HSI and regression models accurately predicted moisture and texture, achieving
strong performance (R2 > 0.9) [11]. At the same time, Vision Transformers and U-Net
architectures achieved pixel-level accuracies above 99% in mapping shrimp ponds [12],
strengthening resource management and biosecurity.

Complementary global research further supports these findings. HSI systems inte-
grated with deep learning have enabled the precise, non-invasive detection of contaminants
and adulterants in food matrices [13] while achieving real-time decision-making and high
classification accuracy for quality control [14]. In parallel, recent developments in NIRS-
based food authentication models have demonstrated the superiority of DL methods over
conventional regression for compositional analysis and traceability [15,16]. These advances
reinforce the potential of spectral–AI pipelines to deliver quantifiable, audit-ready data
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aligned with ISO criteria. In particular, HSI models that fuse spectral and textural features
with neural networks have been applied to origin verification in high-value foods such as
salmon [17], addressing fraud-prevention requirements under ISO 22000.

Taken together, these empirical advances demonstrate the transformative impact of
AI-driven tools on Ecuador’s flagship commodities and beyond. More importantly, their
integration aligns directly with ISO principles: HSI and DL generate objective evidence
(ISO 9001), NIRS strengthens conformity verification and fraud prevention (ISO 22000), and
digital records reinforce traceability (ISO 22005). This perspective frames the emergence
of “Quality 4.0”—the digital transformation of quality management systems [18]—not
merely as a technological upgrade but as a socio-technical paradigm that accelerates the
Plan–Do–Check–Act (PDCA) cycle and enhances auditability.

Nevertheless, adoption in emerging economies faces barriers, including high invest-
ment costs, limited digital maturity, and skills shortages. For Ecuadorian SMEs, these
obstacles are significant and require coordinated support from industry, government, and
academia. Still, the benefits—greater accuracy, reduced inspection times, improved trace-
ability, and stronger compliance with international standards—outweigh the challenges.

By bridging cutting-edge digital technologies with globally recognized standards, the
research not only enriches academic debates on quality management in the era of Industry
4.0, but also addresses the pressing challenge of ensuring that agri-food exporters from
emerging economies remain competitive, trustworthy, and sustainable in international mar-
kets. Specifically, it examines how deep learning (DL), digital (RGB) imaging, hyperspectral
imaging (HSI), and near-infrared spectroscopy (NIRS) can be integrated into process-level
monitoring to classify visible and non-visible quality attributes—such as ripeness, ma-
turity, defects, and freshness—while ensuring ISO-aligned, real-time quality control in
agri-food systems.

Building on this aim, the study pursued three core research objectives: (i) to analyze
how AI technologies can enhance ISO-based quality control in Ecuador’s banana, cacao, cof-
fee, and shrimp industries; (ii) to compare the effectiveness of AI-based quality assessments
against traditional inspection methods in terms of speed, accuracy, and traceability; and
(iii) to conceptualize a Quality 4.0 framework that integrates AI tools with ISO principles
for food quality management in emerging economies.

In summary, the main contributions of this study can be outlined as follows: (1) Con-
ceptual contribution: It advances the theoretical understanding of Quality 4.0 by demon-
strating how artificial intelligence (AI)-driven inspection systems operationalize the core
principles of ISO 9001 and ISO 22000 through objective, traceable, and auditable evidence;
(2) Methodological contribution: It develops and validates a fully integrated, ISO-aligned
framework that combines hyperspectral imaging (HSI), near-infrared spectroscopy (NIRS),
and deep learning architectures for process-level quality control under semi-industrial
conditions; (3) Empirical contribution: It provides the first large-scale, multi-commodity
evaluation—covering bananas, cacao, coffee, and shrimp—in an emerging-economy con-
text, demonstrating robust and consistent performance (accuracy > 88%, AUC > 0.90)
across diverse agri-food value chains; and (4) Practical contribution: It offers a roadmap for
policymakers, quality managers, and small and medium-sized enterprises (SMEs) to adopt
AI-enabled inspection as part of the digital transformation strategies aimed at enhancing
export competitiveness, regulatory compliance, and traceability.

These contributions collectively establish an ISO-aligned, AI-based framework that
bridges technological innovation with international quality management standards, posi-
tioning Ecuador’s agri-food sector as a reference model for digitally enabled, sustainable,
and globally competitive quality assurance systems.
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2. Theoretical Framework
2.1. ISO Standards and Food Quality Management

International standards provide the governance architecture for modern food quality
and safety systems. ISO 9001:2015 specifies the requirements for a Quality Management
System (QMS) organized around the process approach, risk-based thinking, and the Plan–
Do–Check–Act (PDCA) cycle to ensure consistent, evidence-based control of processes
and outputs, including customer focus, leadership, and continual improvement [1]. In
parallel, ISO 22000 [2] defines the Food Safety Management System (FSMS) and integrates
HACCP concepts from Codex with PDCA and risk-based thinking across the food chain;
the standard clarifies how the management-system PDCA and the operational PDCA
interact to govern hazards from farm to fork [19,20].

Within this family, traceability is treated as a distinct, complementary capability.
ISO 22005 establishes general principles and basic requirements for designing and im-
plementing feed-and-food traceability systems, aligning with Codex definitions and is
intended to complement ISO 22000 implementations by enhancing recall readiness, prove-
nance verification, and supply chain transparency [21,22]. Credible certification and surveil-
lance over time also depend on the competence and rigor of auditing; ISO 19011 [19]
provides overarching guidelines for auditing management systems (planning, princi-
ples, and auditor competence) and underpins consistent conformity assessment across
integrated systems.

For export-oriented economies, such as Ecuador, where bananas, cacao, coffee, and
shrimp are strategic sectors, formal conformance is often a de facto market-access require-
ment because international buyers condition procurement on recognized schemes and
demonstrable traceability. This expectation is reinforced by public regulation: for example,
Regulation (EC) No. 178/2002 of the European Parliament and of the Council establishes
that the traceability of food and feed must be ensured at all stages of production, processing,
and distribution (Art. 18), enabling rapid recalls and cross-border accountability [22]. In
this context, ISO-based QMS/FSMS frameworks do not merely signal internal discipline;
they underwrite transactional trust by making controls auditable, repeatable, and portable
across multi-tier supply networks [1,19].

However, traditional control practices—such as manual inspection, destructive sam-
pling, and off-line laboratory testing—struggle to keep pace with global throughput and
the PDCA cadence implied by ISO clauses on monitoring and measurement, control
of nonconforming outputs, analysis/evaluation, and improvement. ISO’s own imple-
mentation and auditing guidance emphasizes systematic, timely tracking, and evidence
sufficiency—needs best met when measurement becomes pervasive and digital (e.g., com-
puter vision, spectroscopy, IoT) and when data flow seamlessly into QMS/FSMS analyt-
ics for real-time decisions [1,2,19]. As organizations modernize, audit programs must
also adapt—validating measurement-system integrity (including metrological traceabil-
ity), data governance, and (where relevant) algorithm life-cycle controls—so that digi-
tally enabled quality and safety systems continue to satisfy ISO principles and withstand
certification scrutiny [19].

2.2. Artificial Intelligence in Food Quality Control

Artificial intelligence (AI) in food quality control encompasses digital (RGB) imaging
and computer vision, deep learning (DL), and spectroscopic sensing (HSI and NIRS), en-
abling machines to perform perception and decision-making tasks that human inspectors
traditionally carry out. Across commodities, convolutional neural networks (CNNs) con-
sistently outperform manual grading for defect detection [5], surface-quality assessment,
and product classification while reducing subjectivity and enabling accurate, line-speed in-
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spection [3]. Recent reviews synthesize evidence of high accuracy across fruits, vegetables,
grains, meats, and seafood, and document the shift from handcrafted features toward end-
to-end CNNs and lightweight architectures for embedded industrial deployment [23–26].

2.2.1. Hyperspectral Imaging (HSI)

Hyperspectral imaging (HSI) integrates imaging and spectroscopy by capturing hun-
dreds of contiguous spectral bands at each spatial pixel, generating a three-dimensional
data cube (x, y, λ) that encodes both spatial and chemical information. Each pixel con-
tains a unique spectral “fingerprint” of the material’s composition and structure, allow-
ing the simultaneous analysis of external and internal product attributes invisible to
RGB cameras—such as moisture, pigment concentration, tissue firmness, or microbial
spoilage indicators.

In agri-food applications, HSI bridges the gap between laboratory-based spectroscopy
and high-throughput vision inspection. Line-scan (“push-broom”) systems acquire spectral
lines synchronously with conveyor motion, providing pixel-level reflectance spectra in
real-time. Calibration typically involves dark/white references, geometric alignment,
and reflectance normalization. Preprocessing steps include spectral smoothing (Savitzky–
Golay), scatter correction (SNV, MSC), and noise removal to ensure comparability across
sessions and lighting conditions [13,27].

Coupled with DL, HSI achieves state-of-the-art performance for internal-quality pre-
diction, freshness assessment, and safety screening. Spectral–spatial CNNs and 3D CNNs
extract both wavelength-dependent and morphological patterns, enabling the accurate
discrimination of ripeness, firmness, and compositional attributes in products such as
bananas, tomatoes, apples, shrimp, and fish fillets [13,28]. These hybrid models outperform
traditional chemometric methods (PLSR, LDA) by learning nonlinear spectral interactions
directly from raw reflectance data.

From an ISO perspective, HSI provides objective and traceable measurement evidence
that can be directly linked to ISO 9001:2015 (§9.1.3 Monitoring and measurement results)
and ISO 22000:2018 (§8.5.4 Monitoring and measurement of CCPs). Because each spectral
acquisition is time-stamped, reproducible, and non-destructive, it enables evidence-based
decision-making and conformity verification without interrupting production. The dig-
ital trace generated by HSI supports automated nonconformity detection and real-time
corrective actions, effectively accelerating the “Check” and “Act” stages of the PDCA cycle.

However, HSI adoption faces constraints. Its data volumes are substantial, requiring
robust data pipelines and storage, while system calibration demands consistent illumination
and temperature control. Equipment cost and operator expertise also limit diffusion among
SMEs, highlighting the importance of simplified, miniaturized HSI systems and university–
industry collaborations to reduce adoption barriers.

2.2.2. Near-Infrared Spectroscopy (NIRS)

Near-infrared spectroscopy (NIRS) complements HSI by focusing on molecular-level
compositional analysis. Operating typically in the 800–2500 nm range, NIRS measures
overtones and combination vibrations of C–H, N–H, and O–H bonds—signals that correlate
with chemical constituents such as moisture, proteins, fats, sugars, and volatile compounds.
Unlike HSI, NIRS does not provide spatial information but excels in rapid, point-based
analysis suitable for bulk or inline monitoring.

NIRS has been widely applied in coffee, cereals, cocoa, and meat processing to assess
product authenticity, adulteration, and quality attributes [29–31]. In coffee, NIRS coupled
with chemometrics or DL regression can classify post-harvest processing methods, detect
adulterants in ground coffee, and predict sensory attributes with high accuracy. In cocoa
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and grains, NIRS models quantify moisture and fat content, while in aquaculture, they
support freshness evaluation by correlating spectral responses with biochemical markers.

The advantages of NIRS include portability, low cost, and high analytical speed
(seconds per scan). Portable fiber-optic probes or benchtop spectrometers can perform com-
positional analysis in situ, providing near-real-time data to feed into enterprise QMS/FSMS
systems. In an ISO-aligned context, NIRS fulfills roles in verification and conformity control
(ISO 22000:2018 §8.8), providing quantitative evidence of compliance with compositional
specifications and authenticity claims.

Recent deep learning models, including one-dimensional CNNs, LSTMs, and
Transformer-based spectral encoders, have improved robustness to noise and batch varia-
tion, achieving superior performance over classical chemometric approaches. However,
challenges remain: standardization across instruments, spectral drift, and transferability of
models across product origins or varieties require domain adaptation and spectral align-
ment techniques [32,33]. Addressing these gaps is essential to ensuring traceability and
metrological reliability in accordance with the ISO 9001 and ISO 19011 auditing principles.

2.2.3. Integration with Deep Learning and ISO-Aligned Quality Systems

When integrated into DL pipelines, HSI and NIRS provide complementary insights:
HSI captures where quality deviations occur (spatial distribution), while NIRS quantifies
what compositional changes are present (chemical structure). Combining these modalities
enhances predictive accuracy and allows for multivariate fusion models that detect both
surface-level and internal nonconformities.

Digital (RGB) imaging and computer-vision, HSI, and NIRS systems collectively
generate native digital evidence—spectra, timestamps, classification probabilities, and
traceable identifiers—that can be seamlessly incorporated into ISO-based management
systems. Each inspection event becomes a verifiable data point for conformity evidence
(§8.6) and continuous improvement (§10.2). Furthermore, when coupled with blockchain or
cloud-based QMS platforms, these data streams form tamper-evident digital logs, ensuring
transparency and accountability in audits [34].

By translating sensory and spectral data into standardized quality metrics, AI-driven
inspection systems transform the ISO Plan–Do–Check–Act (PDCA) cycle into a contin-
uous, data-driven feedback loop. This convergence between AI technologies and ISO
standards embodies the core of the Quality 4.0 paradigm, linking real-time measurement
with organizational learning and digital traceability across the agri-food value chain.

2.3. AI Applications in Ecuadorian Agri-Food Quality Control

Banana. As Ecuador’s flagship export, bananas have been an early testbed for AI-
driven inspection. Deep learning models can now diagnose foliar diseases, such as Black
Sigatoka, directly from leaf images, with EfficientNet-based pipelines achieving ~88% accu-
racy after augmentation—enabling earlier interventions that protect yield and post-harvest
quality [4]. At the packing line, CNN-based visual grading has achieved high precision
for ripeness and quality attributes from RGB images. A recent study on processes re-
ported accuracies above 95% and discussed dual models that combined RGB with spectral
cues [6]. Complementing vision, hyperspectral and multispectral methods enable the non-
destructive assessment of internal attributes (e.g., firmness, soluble solids), with classical
chemometrics and spectral–spatial learning delivering validation accuracies exceeding 90%
for maturity discrimination [35,36]. Survey and application papers further document a
near 98% classification accuracy for banana ripeness tasks under controlled conditions,
including dual CNN/HSI approaches [6,37]. Together, these tools support ISO-aligned ob-
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jectives: objective measurement (ISO 9001) and continuous monitoring for nonconformities
prior to export.

Cacao. For fine-flavor cacao, on-tree pod maturity estimation is pivotal for uniform
fermentation. Field-validated detectors (Faster R-CNN/Mask R-CNN; YOLO variants)
now segment and classify pods by ripeness in complex backgrounds, reporting robust
average precision and demonstrating feasibility for harvest timing [9]. At the bean level,
NIR–HSI with chemometrics discriminates cocoa hybrids and quantifies compositional
attributes at single-bean resolution, which is crucial for varietal authentication and premium
lots [10]. Recent systematic reviews of AI in cocoa have confirmed the growing use of
YOLO/SSD architectures for disease detection and ripeness tasks, with an emphasis on
deployable, resource-efficient models for producer contexts [38]. These developments
strengthen ISO 22000 documentation by linking maturity and varietal claims to objective,
traceable measurements.

Coffee. In Ecuador and beyond, automated bean inspection mitigates the subjectiv-
ity of manual defect grading. A CNN-based pipeline applied to beans from Imbabura
(Ecuador) reported high recognition performance for morphological defects and argued
for replacing purely manual inspection in local mills [7]. At scale, object-detection models
(YOLO family) have reached strong performance in classifying green coffee beans and
flaws [39], while multimodal, real-time systems fuse NIR snapshot–HSI with deep learning
for defect sorting on conveyors [40]. Beyond visual defects, spectroscopy extends to pro-
cess/authenticity claims: NIRS with chemometrics has been shown to classify post-harvest
processing and origin with high accuracy, improving traceability and claims verification
in specialty markets [8]. These capabilities directly reinforce ISO 22000’s emphasis on
transparency and verification along the chain.

Shrimp. For Ecuador’s dominant aquaculture product (Penaeus vannamei), HSI enables
the line-speed monitoring of freshness and processing quality. During hot-air drying, HSI
models predict moisture, color, and texture with strong fits (e.g., R2 > 0.9), enabling the
non-destructive control of water activity and sensory attributes [11]. Complementary stud-
ies report near-ceiling accuracy (99%) for freshness classification using CNN/LSTM and
YOLOv8 variants on image data, with Grad-CAM visualizations increasing explainability
and offering a rapid alternative to periodic microbiological tests [41]. Data-fusion ap-
proaches that combine HSI and electronic-nose signals further improve moisture/freshness
estimation relevant to HACCP verification [42]. Upstream, remote sensing supports trace-
ability and biosecurity: fine-tuned Vision Transformers and U-Net delineate Ecuadorian
shrimp ponds at high fidelity, providing spatial baselines for certification, environmental
monitoring, and supply chain mapping [12].

Taken together, these Ecuador-relevant case threads demonstrate that AI—utilizing
RGB vision, HSI/NIR spectroscopy, and geospatial analytics—addresses both visible (sur-
face defects, color grade) and non-visible (moisture, composition, origin) attributes in
near real-time. This enables 100% inspection, richer digital traceability, and earlier cor-
rective actions—capabilities that operationalize ISO 9001’s evidence-based decisions and
ISO 22000’s verification/traceability requirements in export-oriented banana, cacao, coffee,
and shrimp chains.

2.4. Quality 4.0 as an Integrative Framework

The adoption of AI in food quality management is most coherently framed by Quality
4.0, i.e., the alignment of traditional quality philosophies with Industry 4.0 technologies
(AI/ML, big data analytics, IoT, cloud/edge, blockchain) [18]. Systematic reviews conclude
that Quality 4.0 extends the scope of quality from reactive inspection to connected, data-
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driven, and predictive control, improving operational efficiency and traceability while
preserving foundational quality principles [43–45].

A central insight of this literature is that Quality 4.0 operationalizes ISO 9001 at
digital speed. Implementation guidelines show how ISO 9001’s PDCA can be mapped
to cyber-physical architectures: IoT sensors and computer vision expand “Do/Check”
with continuous, in-line monitoring; analytics dashboards provide evidence for “Check”;
and predictive/prescriptive models accelerate corrective and preventive actions in “Act.”
Empirical and conceptual work further underscore the role of organizational readiness
(skills, data governance, culture) in realizing these benefits [46–48]. In practice, this means
embedding AI models in processes (sorting, drying, storage), integrating their outputs
into the QMS as objective evidence, and automating nonconformity handling and trend
analysis consistent with ISO clauses on performance evaluation and improvement.

On the food-safety side, Quality 4.0 augments ISO 22000 by strengthening hazard con-
trol, verification, and end-to-end traceability. Blockchain-enabled ledgers can immutably
record quality and safety events (e.g., CCP checks, spectroscopic measurements), thereby
enhancing auditability and recall management while reducing the risk of data tamper-
ing. Studies propose integration patterns that combine blockchain with ISO 9001/22000
documentation and IoT data streams [34,49,50]. For agri-food chains, where multi-tier
provenance and cold-chain integrity are crucial, these architectures establish trustworthy
digital trails that align with ISO requirements for documented information and verification.

Crucially, Quality 4.0 does not replace ISO standards; it provides the technological
means to implement them more effectively. Reviews emphasize that the most significant
gains occur when firms pair digital sensing/AI with disciplined QMS/FSMS design—using
standards to define what to measure and control, and utilizing digital tools to achieve this
at scale and speed [43,44]. This complementarity is particularly consequential in emerging
economies, where reliance on manual inspection limits compliance and responsiveness.
Digital, non-destructive instrumentation, combined with AI, can enable 100% inspection,
provide richer audit evidence, and facilitate faster PDCA cycles without prohibitive labora-
tory overheads [47,48].

2.5. Advantages and Challenges of AI Adoption

The advantages of AI-based food quality control are well-documented: speed (line-
speed, non-destructive inspection), accuracy/consistency (higher and more stable de-
tection/classification rates than manual checks), traceability (native digital logs linking
results to lots/units), and coverage (feasibility of 100% inspection instead of sampling). In
vision and spectroscopy applications, hyperspectral imaging (HSI) and near-infrared spec-
troscopy (NIRS), when paired with machine learning, routinely deliver strong performance
for defect detection, freshness/moisture prediction, and compositional or authenticity
assessment—capabilities that directly support evidence-based decisions and verification
under ISO 9001/22000 [13,51–53]. For export-oriented firms in Ecuador, these gains trans-
late into more reliable compliance with buyer specifications and a lower risk of shipment
rejections, as decisions are grounded in objective, auditable measurements rather than
intermittent, subjective appraisals [51,52].

Adoption, however, faces technical, economic, and organizational hurdles. Up-front
costs for line-scan cameras, spectrometers, controlled illumination, and compute/edge
hardware remain significant—especially for SMEs—and HSI pipelines add complexity in
calibration, high-volume data handling, and model maintenance [13,51,52]. Firms also
report skills gaps in data science and MLOps, and broader Industry 4.0 studies high-
light limited digital maturity, weak data governance, and change management challenges
as persistent barriers [48,54,55]. In Latin America, connectivity constraints exacerbate
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these issues: regional diagnostics reveal pronounced digital divides—particularly in rural
areas—impacting real-time data transfer and cloud integration [56,57]. Trust and gover-
nance add further friction: black-box perceptions can reduce operator acceptance and
complicate audits, motivating the development of explainable AI (XAI) and transparent
decision trails in quality contexts [58,59]. From an operational perspective, sustaining
models in production requires monitoring model/data drift, as well as managing technical
debt to prevent silent performance decay [54,60,61].

Mitigation pathways include staged deployments with ROI pilots, miniaturized/portable
NIRS to lower capital expenditures where HSI is prohibitive, workforce upskilling through
university–industry partnerships, and policy instruments that expand rural connectivity
and incentivize SME digitalization [42,48,53,56]. Together, these measures help convert AI’s
technical promise into resilient, ISO-aligned quality systems.

2.6. Research Objectives and Hypotheses

Based on the literature and the identified research gap, this study pursued the follow-
ing objectives:

1. To analyze how artificial intelligence (AI) technologies—specifically deep learning
(DL), hyperspectral imaging (HSI), near-infrared spectroscopy (NIRS), and computer
vision—can enhance ISO-aligned quality control in Ecuador’s banana, cacao, coffee,
and shrimp industries.

2. To compare the effectiveness of AI-based inspection methods against traditional, man-
ual, or laboratory-based quality control practices in terms of classification accuracy,
detection speed, and digital traceability.

3. To conceptualize and validate a Quality 4.0 framework that integrates AI-driven sens-
ing and analytics (HSI, NIRS, DL) with ISO principles for evidence-based, auditable,
and real-time food quality management in emerging economies.

From these objectives, the following hypotheses were formulated:

• Main Hypothesis (H0): The adoption of AI-based systems in Ecuador’s food industry
significantly improves quality outcomes—such as the accuracy of defect detection, the
consistency of grading, and the completeness of traceability—compared to traditional
inspection methods.

• Specific Hypothesis 1 (H1): Deep learning-based computer vision reduces inspection
time and increases classification consistency for surface-level attributes (ripeness,
maturity, and defects) in bananas and cacao relative to manual inspection.

• Specific Hypothesis 2 (H2): Spectroscopy-based methods (HSI and NIRS) improve
the detection of internal or non-visible attributes (e.g., moisture, spoilage, sweetness,
and compositional integrity) in coffee and shrimp, thereby enhancing conformity
verification under ISO-based quality standards.

Together, these objectives and hypotheses delineate a testable pathway for demon-
strating how AI can operationalize ISO-based quality management in Ecuador’s agri-food
chains. In Section 3, these constructs are translated into measurable evaluation criteria:
(i) speed, defined as inspection throughput and latency; (ii) accuracy and consistency,
measured through classification metrics and spectral regression performance (R2, RMSE);
and (iii) traceability, assessed through the completeness and timeliness of digital inspection
records (lot-level chain-of-custody and time-to-trace indicators).

By grounding the analysis in Ecuador’s flagship export commodities and by establish-
ing explicit, technology-linked metrics, the study aims to generate both empirical evidence
for Quality 4.0 in emerging economies and practical guidance for firms seeking faster, more
reliable, and auditable process-level quality control.
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3. Materials and Methods
3.1. Research Design

This study employed an applied experimental design to assess how artificial intel-
ligence (AI) tools—specifically, hyperspectral imaging (HSI), near-infrared spectroscopy
(NIRS), and deep learning (DL)—can operationalize ISO-aligned quality management in
agri-food chains. The research design followed three sequential stages: (i) acquisition
of representative and stratified samples from four flagship export commodities (banana,
cacao, coffee, and shrimp); (ii) system configuration and data acquisition through digital
(RGB) imaging, HSI, and NIRS under semi-industrial conveyor conditions; and (iii) model
training, validation, and benchmarking against conventional inspection practices.

To ensure reproducibility and data transparency, all experiments were conducted with
predefined sample sizes per commodity, systematic randomization procedures, and explicit
train/validation/test splits. Random seeds were fixed across runs to allow for replication
of the results. Performance evaluation combined classification metrics (accuracy, precision,
recall, specificity, ROC-AUC) and regression indicators (R2, RMSE, residual predictive devi-
ation), complemented by statistical validation through multifactorial ANOVA, confidence
intervals, and Pearson correlations.

The overall workflow is summarized in Figure 1, which depicts the pipeline from
sample acquisition to statistical validation. It highlights how spectral and imaging data
were integrated with deep learning architectures, and how the resulting outputs were
statistically validated and mapped to ISO 9001/22000 clauses, ensuring that the results are
accurate, auditable, and reproducible in accordance with international standards.

 

Figure 1. Experimental workflow for AI-based food quality control. The diagram represents the se-
quential stages of the process-level inspection pipeline aligned with the Plan–Do–Check–Act (PDCA)
cycle. It outlines sample acquisition from four commodities (banana, cacao, coffee, shrimp), system
setup with conveyor-based RGB, hyperspectral (400–1000 nm), and NIR devices, data preprocessing,
model training and validation using deep learning architectures (CNN, YOLO, 3D CNN) and tradi-
tional machine learning algorithms (PLSR, SVM), performance evaluation, statistical validation, and
mapping of results to the ISO 9001, 22000, and 22005 requirements.

To illustrate the alignment of the proposed framework with ISO-based continuous
improvement, Figure 2 depicts the integration of the experimental workflow within the
Plan–Do–Check–Act (PDCA) cycle. Each quadrant represents a stage of ISO 9001 and ISO
22000 implementation: Plan—definition of quality objectives, control points, and critical
parameters for each commodity; Do—data acquisition through digital (RGB), hyperspec-
tral (HSI), and near-infrared (NIRS) systems; Check—model evaluation using confusion
matrices, ROC curves, and statistical validation; Act—implementation of corrective or
preventive actions such as retraining or parameter adjustment. The center of the cycle,
Digital Traceability & Auditability, represents the core ISO requirement for documented
evidence and continuous improvement.
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Figure 2. ISO-based Plan–Do–Check–Act (PDCA) alignment of the AI-driven quality control frame-
work. The figure illustrates how the proposed multimodal system (digital, HSI, and NIRS imag-
ing) integrates within the ISO continuous improvement cycle. Each quadrant represents a PDCA
stage—Plan, Do, Check, and Act—while the central node, Digital Traceability & Auditability, high-
lights the generation of verifiable, time-stamped evidence that supports conformity verification and
continual improvement.

3.2. Sample Acquisition

Representative samples were collected from Ecuadorian producers and processing
facilities, ensuring alignment with the country’s primary export commodities. Sampling
procedures were designed to capture both visible and non-visible variability typically
encountered in commercial practice while also reflecting ISO requirements for systematic
and traceable acquisition. For each commodity, stratification was applied to ensure balanced
representation of relevant quality categories (e.g., ripeness, maturity, defects, freshness).
All samples were uniquely coded, documented with lot information, and photographed to
maintain traceability records consistent with ISO 9001, ISO 22000, and ISO 22005.

• Bananas (Musa AAA). A total of 360 fruits were collected from packing houses in El Oro
and Los Ríos, Ecuador’s central banana-producing provinces. Fruits were stratified
across ripening stages (green, turning, yellow, export-ready), ensuring a balanced
representation of peel coloration, firmness, and soluble solid content (Table 1).

• Cacao (Theobroma cacao). A total of 210 pods were harvested at different maturity
stages (immature, mid-ripe, and fully ripe), and 900 beans were collected from post-
harvest fermentation batches. Sampling emphasized the Nacional variety, a flagship
Ecuadorian cacao, to support the classification of pod ripeness, fermentation potential,
and hybrid authentication (Table 1).

• Coffee (Coffea arabica). A total of 2400 green beans were obtained from cooperatives in
Imbabura and Loja. Beans were stratified into defect and non-defect categories (bro-
ken beans, insect damage, discoloration), reflecting the heterogeneity of Ecuadorian
production. Batches included both specialty lots and bulk export coffee to test the
robustness of defect-detection pipelines (Table 1).

• Shrimp (Penaeus vannamei). A total of 480 specimens were sampled at successive stages
of post-harvest processing and drying (fresh, semi-dried, export-ready). Moisture
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content, surface color, and texture variability were prioritized, as they are critical
indicators of freshness and quality compliance in aquaculture exports (Table 1).

Table 1. Summary of samples and stratification.

Commodity Unit of Analysis Classes/Strata Total N Distribution
per Class/Stratum Lots/Batches (Traceability)

Bananas (Musa
AAA) Fruit

Ripeness:
green/turning/yellow/export-
ready

360 90/90/90/90 6 lots (2 provinces × 3 packing
houses)

Cacao (Theobroma
cacao)—pods Pod Maturity: immature/mid-

ripe/fully ripe 210 70/70/70 6 lots (3 farms × 2 harvest dates)

Cacao—beans Individual bean Varietal authentication
(binary) 900 450/450 6 post-harvest fermentation lots

Coffee (Coffea
arabica) Individual bean Defect vs. non-defect

(binary) 2400 1200/1200 8 lots (4 cooperatives × 2 weeks)

Shrimp (Penaeus
vannamei)

Individual
specimen

Fresh vs. semi-dried
(binary) 480 240/240 6 lots (3 plants × 2 shifts)

Across all commodities, samples were organized into stratified lots of comparable size,
allowing balanced datasets for training, validation, and testing of AI models. The stratified
dataset splits (70% train, 15% validation, 15% testing) are detailed in Table 2, ensuring the
transparency and reproducibility of model development. This design provided sufficient
statistical power, minimized class imbalance, and captured the operational variability
typical of Ecuadorian supply chains.

Table 2. Stratified dataset splits (70% train, 15% validation, 15% test).

Commodity Train Validation Test Approx. Distribution per Class (Stratified)

Bananas (360) 252 54 54 Per class (90): 63/13/14
Cacao—pods (210) 147 31 32 Per class (70): 49/10/11
Cacao—beans (900) 630 135 135 Per class (450): 315/67/68
Coffee (2400) 1680 360 360 Per class (1200): 840/180/180
Shrimp (480) 336 72 72 Per class (240): 168/36/36

3.3. System Configuration

The experimental setup combined conveyor-belt transport with digital (RGB) imaging
and spectral sensing, simulating the operational conditions typically found in industrial
packing lines. This configuration was designed to enable the continuous, non-destructive
inspection of products at line speed, while ensuring the reproducibility and traceability
of measurements.

A conveyor belt system (1.0 m length, adjustable speed up to 1.05 m/s) (Custom-built
prototype, Universidad UTE, Quito, Ecuador) was employed to standardize sample move-
ment and ensure consistent positioning during image capture. The belt speed was calibrated
to balance throughput with exposure time, minimizing motion blur while maintaining
industrially relevant conditions.

For digital (RGB) imaging, a high-resolution RGB camera (1920 × 1080 px, CMOS
sensor, 12 MP equivalent) (Basler acA1920-40uc, Basler AG, Ahrensburg, Germany) oper-
ating at 30 frames per second was mounted 50 cm above the conveyor. Dual 100 W LED
lamps (color temperature ≈ 5500 K) (Yongnuo YN-300 LED Panel, Yongnuo Photographic
Equipment Co. Ltd., Shenzhen, China) were positioned laterally with diffusers to provide
uniform illumination, reducing shadow artifacts and improving color consistency for defect
detection and color-based classification tasks.

For spectral sensing, two complementary systems were deployed:
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• Hyperspectral imaging (HSI). A push-broom system (400–1000 nm range, spectral
resolution ≈ 2.8 nm, 224 bands) (Specim FX10 push-broom camera, Specim Spectral
Imaging Ltd., Oulu, Finland) was used to capture spatial–spectral signatures related
to moisture, pigment composition, and structural integrity. The system included
an adjustable fore-optic lens and a line-scan camera, synchronized with conveyor
movement, to minimize motion artifacts.

• Near-infrared spectroscopy (NIRS). A portable NIRS device (800–2500 nm, 10 nm
resolution) (NIRQuest 512, Ocean Insight Inc., Orlando, FL, USA) enabled rapid spot
measurements of internal compositional attributes, such as soluble solids and freshness
indicators. Measurements were averaged across three replicate scans per sample to
minimize variability.

Both spectral systems were radiometrically calibrated at the beginning of each acquisi-
tion session using white (Spectralon®) (Labsphere Inc., North Sutton, NH, USA) and dark
references. Standard preprocessing protocols—including geometric alignment, reflectance
normalization, and correction for illumination variability—were applied to guarantee
comparability across samples and across sessions, with all calibration and acquisition
steps documented in accordance with ISO requirements for measurement system integrity
and traceability.

As a methodological benchmark, the pineapple-classification prototype developed
by Cordovés-García et al. [62] validated the feasibility of integrating conveyor transport,
digital imaging, and automated rejection mechanisms for fruit inspection, demonstrating
the adaptability of such configurations to multiple crops. A detailed summary of the
technical specifications of the conveyor, RGB camera, illumination system, HSI device, and
NIRS device is provided in Table 3, ensuring complete transparency and reproducibility of
the experimental configuration.

Table 3. Equipment specifications for digital (RGB) imaging and spectral sensing.

Device Parameter Specification

Conveyor system Length 1.0 m (adjustable speed up to 1.05 m/s)
Control Calibrated for a balance between throughput and exposure to minimize motion blur

RGB camera

Resolution 1920 × 1080 px (≈12 MP equivalent)
Sensor CMOS sensor
Frame rate 30 fps
Mounting 50 cm above conveyor

Illumination

Source Dual LED lamps
Power 2 × 100 W
Color temperature ≈5500 K (daylight)
Accessories Diffusers to ensure uniform illumination

Hyperspectral
imaging (HSI)

Type Push-broom line-scan system
Spectral range 400–1000 nm
Spectral resolution ≈2.8 nm
Number of bands 224
Optics Adjustable fore-optic lens, synchronized with conveyor motion

Near-infrared
spectroscopy
(NIRS)

Range 800–2500 nm
Spectral resolution ≈10 nm
Measurement mode Portable, spot acquisition
Replicates 3 replicate scans per sample averaged

Calibration
Reference standards White (Spectralon®) and dark references before each session
Corrections Reflectance normalization, geometric alignment, and illumination correction

To ensure that the imaging and spectral systems operated reliably under conveyor
motion, we implemented an encoder-synchronized triggering scheme with hardware
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strobing and global-shutter acquisition. This approach allowed for square ground sampling
and minimized blur, even at the highest belt speed tested (1.0 m/s).

The corresponding parameters—including ground sampling distance, required line
rates, maximum integration times, and RGB exposure limits—are summarized in Table 4.
These values demonstrate how motion-artifact control was achieved through the combina-
tion of encoder-locked line triggering, sub-0.2 ms exposures, and (when necessary) spectral
binning, thereby guaranteeing artifact-free acquisition across all experimental conditions.

Table 4. Motion-artifact control and synchronization parameters (examples at two belt speeds).

Parameter Symbol Value @ 0.50 m/s Value @ 1.00 m/s Notes

Cross-track FOV/pixels FOV/N 300 mm/1024 px 300 mm/1024 px Fixed geometry
Ground sampling (x) GSDx 0.293 mm/px 0.293 mm/px FOV/N
Target along-track sampling GSDy ≈0.293 mm/px ≈0.293 mm/px Square pixels
Required HSI line rate fline ≥1706 lines/s ≥3413 lines/s v/GSDy
Max integration time (¼ px blur) tint,max ≤147 µs ≤73 µs 0.25GSDy/v
RGB exposure (¼ px blur) tRGB ≤147 µs ≤73 µs Global shutter + strobe
Spectral setting — 224 bands (std) 112–224 bands 2× binning if needed
Trigger source — Encoder (HW) Encoder (HW) One line/0.29 mm

Synchronization and Motion-Artifact Control (HSI/RGB)

To guarantee blur-free acquisition on a moving conveyor, we coupled the push-broom
HSI camera to a quadrature encoder mounted on the belt drive. We used hardware
triggering for line acquisition and illumination. The design follows three principles:

1. Square ground sampling and line rate

To guarantee square ground sampling, the cross-track ground sampling distance (GSD)
was computed from the field of view (FOV) and the number of detector pixels, as shown
in Equation (1):

GSDx =
FOV

Npixels
=

300 mm
1024

= 0.293 mm/px (1)

The along-track sampling was set to approximately the same value,
(
GSDy ≈ GSDx

)
.

For a given belt speed v (m/s), the required line-scan rate ensuring square pixels is defined
in Equation (2):

fline ≥ v
GSDy

(2)

Thus, at v = 0.50 m/s, fline ≥ 0.50/0.000293 ≈ 1706 lines/s; and at v = 1.00 m/s,
fline ≥ 3413 lines/s.

These rates define the minimum acquisition frequency needed to maintain square
ground sampling during conveyor movement.

2. Integration time bound and strobing

Motion blur in object space was calculated according to Equation (3):

b = v · tint (3)

To limit blur to a quarter-pixel, the exposure time tint was bounded as expressed
in Equation (4):

b ≤ 0.25 · GSDy ⇒ tint ≤
0.25 · GSDy

v
(4)
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For GSDy = 0.293 mm and v = 1.00 m/s, the maximum allowable integration time
was calculated as shown in Equation (5):

tint ≤ 73µs (5)

In practice, high-intensity LED line lights (CCS LFX3-100SW, CCS Inc., Kyoto, Japan)
were employed with hardware strobing and short exposures (70–200 µs, depending on
product albedo). When required, 2× spectral binning (224 → 112 bands) was applied to
preserve signal-to-noise ratio (SNR) at higher line-scan rates.

3. Encoder-based trigger and global shutter

A 50 mm encoder wheel (Omron E6B2-CWZ6C, Omron Corporation, Kyoto, Japan)
(circumference ≈ 157 mm) with 1000 ppr yields ≈ 6.37 pulses/mm (×4 in quadrature). We
divided the pulses into firing one HSI line per 0.29 mm of belt travel (square sampling).
The RGB camera (global shutter) was externally triggered from the same encoder to acquire
context frames at 15–30 fps with short exposures (see below), ensuring temporal alignment
between RGB/HSI and the ejection actuators. Rolling-shutter modes were avoided.

RGB exposure at line speed. RGB images were captured with exposure tRGB such
that v · tRGB ≤ 0.25 · GSDx. At v = 0.50 m/s this gives tRGB ≤ 147µs; at v = 1.00 m/s,
tRGB ≤ 73µs. We operated at 60–100 µs using LED strobes synchronized to the frame trigger.

Spectral throughput vs. speed. At the maximum belt speed, the camera’s maximum de-
skewed line rate was maintained by (i) reducing exposure via strobing, (ii) applying spectral
binning (2×) for dark products (coffee) or low-reflectance conditions (semi-dried shrimp),
and (iii) widening the lens aperture (e.g., f/2.8) under controlled illumination—this pre-
served classification/regression performance without introducing motion artifacts.

3.4. Image Processing and Feature Extraction

The image and spectral datasets underwent a systematic preprocessing pipeline to
ensure consistency, reduce noise, and extract features relevant to quality classification. All
procedures were implemented using open-source libraries —Python 3.10 (Python Software
Foundation, Wilmington, DE, USA), OpenCV 4.9.0 (Intel Corporation, Santa Clara, CA, USA),
and scikit-learn 1.4.1 (scikit-learn developers, Paris, France)—to facilitate reproducibility.

Digital (RGB) image preprocessing. The following steps were applied sequentially:

• Background removal through binarization and masking to isolate the product from
the conveyor and illumination setup.

• Channel separation (R, G, B) to quantify chromatic attributes associated with ripeness,
discoloration, or surface defects.

• Grayscale conversion and adaptive thresholding to support contour detection and
segmentation of anomalous regions.

• Noise filtering using median (3 × 3 kernel) and Gaussian filters (σ = 1.0) to eliminate
high-frequency artifacts while preserving essential structural information.

Region-of-interest (ROI) feature extraction. Commodity-specific descriptors were
computed to capture relevant quality attributes:

• Banana and cacao: Surface color histograms (hue distributions), geometric descriptors
(area, perimeter, roundness) derived from peel/pod segmentation to support ripeness
and maturity classification.

• Coffee: Morphological features (bean length, width, aspect ratio, circularity) and
defect markers (cracks, insect damage, discoloration) were quantified from segmented
beans for defect-detection pipelines.

• Shrimp: Texture descriptors based on gray-level co-occurrence matrices (GLCM:
contrast, homogeneity, entropy) and surface reflectance statistics were extracted to
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identify freshness degradation, with emphasis on subtle color shifts and roughness
variations linked to post-harvest drying.

Spectral preprocessing (HSI/NIRS). Standardized procedures were applied prior to
model training:

• Spectral smoothing with the Savitzky–Golay (SG) filter (2nd-order polynomial, win-
dow size = 11 points) to reduce random noise while preserving peak shapes.

• Scatter correction through standard normal variate (SNV) and multiplicative scat-
ter correction (MSC) to normalize intensity variations caused by sample geometry
or illumination.

• Dimensionality reduction via principal component analysis (PCA), retaining the
first 15–20 components that accounted for ≥95% of the variance, thereby reduc-
ing collinearity in high-dimensional data and facilitating both visualization and
model training.

This preprocessing pipeline ensured that extracted features captured both visible
traits (color, morphology, surface texture) and non-visible attributes (spectral signatures
linked to composition and freshness). By standardizing parameters and documenting all
steps, the pipeline provided a robust, auditable foundation for subsequent deep learning
classification and regression tasks, fully aligning with ISO requirements for evidence-based
decision-making and traceability.

Figure 3 illustrates the preprocessing and spectral feature extraction workflow through
representative examples of original, preprocessed, and spectral images (HSI or NIR) for the
four commodities analyzed: banana, cacao, coffee, and shrimp.

Figure 3. Original and preprocessed images with spectral feature representations across commodities.
(a) Banana; (b) Cacao; (c) Coffee; (d) Shrimp. For each commodity, the first column shows the raw
RGB image on the conveyor; the second shows the segmented/preprocessed version after back-
ground removal and masking; the third displays a representative hyperspectral (HSI) reflectance map
(400–1000 nm) in false color with scale bar; and the fourth shows a near-infrared (NIR) reflectance
map (800–2500 nm) with scale bar.

Panels (a–d) display the raw RGB inputs, their segmented versions after background
removal and masking, and the corresponding spectral reflectance maps (HSI or NIR,
depending on the commodity). These examples highlight how spectral–spatial features are
extracted, normalized, and integrated into the AI-based workflow for quality classification
and regression. Together, they demonstrate how raw visual data are transformed into
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standardized, traceable spectral representations fully aligned with ISO-based process-
monitoring and continual-improvement principles.

3.5. Deep Learning Models

Convolutional neural networks (CNNs) were employed as the primary architecture
for image-based classification tasks. Input images were resized to 170 × 170 × 3 pixels, and
data augmentation techniques—including random rotation (±15◦), horizontal/vertical flip-
ping, gamma correction, Gaussian noise injection, and PCA-based color augmentation—were
applied to address class imbalance and improve model generalization.

The baseline CNN architecture consisted of three convolutional layers, each with
32, 64, and 128 filters (kernel size = 3 × 3), followed by batch normalization, ReLU activation,
and max pooling. Two fully connected layers (256 and 128 neurons, ReLU activation) were
followed by a SoftMax output classifier. Models were trained using the Adam optimizer
(learning rate = 0.001, batch size = 32) for up to 100 epochs with early stopping. Training–
validation–testing splits were set at 70–15–15%, stratified by commodity and class balance,
with random initialization seeds fixed to ensure reproducibility.

For hyperspectral imaging (HSI) datasets, spectral–spatial CNNs and 3D CNNs were
implemented to capture both the spectral and spatial dependencies simultaneously. For
near-infrared spectroscopy (NIRS) data, regression-based approaches, including partial
least squares regression (PLSR) and support vector machines (SVMs), were applied to
predict compositional attributes and freshness indicators.

It is important to note that PLSR and SVM are traditional machine learning algo-
rithms rather than deep learning models; they were incorporated as benchmark regression
methods to complement the deep learning architectures used for image-based classifica-
tion. This hybrid configuration enables the framework to leverage the strengths of both
approaches—high-level feature learning from images and quantitative spectral prediction
via regression models—while maintaining interpretability and computational feasibility.

To contextualize the methodological configuration across commodities, Table 5 sum-
marizes the specific techniques applied, the quality variables analyzed, the models used,
and the key performance metrics considered in this study.

Table 5. Methodological summary of AI-based quality control across commodities.

Product Technique Applied Variables Analyzed AI Model Key Metrics

Banana RGB imaging + HSI Ripeness stage, surface
color, firmness

CNN, spectral–spatial
CNN

Accuracy, Precision,
Recall

Cacao RGB imaging + NIRS/HSI
Pod maturity, bean
composition, and
hybrid authentication

YOLO, CNN, PLSR
chemometrics

Accuracy, Precision,
Specificity

Coffee RGB imaging + NIRS
Morphological defects,
processing method,
and adulteration

CNN, YOLO,
PLSR/SVM

Accuracy, Confusion
Matrix, R2 (spectroscopy)

Shrimp HSI + NIRS + RGB imaging Moisture, freshness, texture,
and color changes 3D CNN, PLSR, SVM R2, RMSE, Accuracy,

Sensitivity/Specificity

As shown in Table 5, each commodity presents distinct quality challenges—ripeness
in bananas, pod maturity in cacao, morphological defects in coffee beans, and freshness
in shrimp—but the AI-based pipeline shares a standard structure: (i) RGB and spectral
imaging for data acquisition, (ii) standardized preprocessing to extract relevant features,
and (iii) classification or regression via deep learning models.

Performance metrics consistently demonstrated improvements in accuracy, sensitiv-
ity, and reproducibility compared to manual inspection. In particular, regression models
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such as PLSR and SVM provided robust predictions of non-visible attributes (e.g., mois-
ture, compositional quality), reinforcing the value of combining vision-based and spectral
approaches. Overall, these methodological configurations illustrate how AI models can
be tailored to commodity-specific requirements while remaining aligned with ISO-based
quality management principles, thereby generating objective, auditable evidence that
strengthens conformity verification under ISO 9001 and ISO 22000.

Training details. All deep learning models were implemented in Python 3.10 (PSF,
USA) using TensorFlow 2.15 (Google LLC, Mountain View, CA, USA) and PyTorch 2.1 (Meta
AI, Menlo Park, CA, USA) frameworks and executed on an NVIDIA RTX 4090 GPU (24 GB
VRAM; NVIDIA Corp., Santa Clara, CA, USA) with 64 GB RAM. Models were trained for
up to 100 epochs with early stopping based on validation loss (patience = 10 epochs) and
learning rates ranging from 0.001 to 0.0005 using the Adam optimizer. The baseline CNN
used He normal weight initialization, batch normalization after each convolutional block,
and a batch size of 32. YOLOv8 models were initialized with pretrained COCO weights
and fine-tuned for 50 epochs using transfer learning. The 3D CNN for hyperspectral
data was trained using 3D convolutional kernels (3 × 3 × 7) and dropout regularization
(p = 0.3) to prevent overfitting. For all models, training, validation, and test splits followed
a 70–15–15% stratified scheme, ensuring balanced class representation. Model checkpoints
and logs were saved after each epoch to allow for reproducibility and traceability, consistent
with the ISO 9001 principles on evidence-based measurement and control of processes.

3.6. Evaluation Metrics

Model performance was evaluated using standard classification and regression metrics,
in accordance with best practices in machine learning and food inspection research.

Classification metrics. For classification tasks, model performance was evaluated using
four standard indicators: accuracy, precision, recall (sensitivity), and specificity, defined
in Equations (6)–(9).

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Recall (Sensitivity) =
TP

TP + FN
(8)

Specificity =
TN

TN + FP
(9)

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false
negatives, respectively.

These indicators were complemented by confusion matrices, which visualize the
distribution of predicted versus actual labels for each commodity class and facilitate
the interpretation of classification reliability. In addition to confusion matrices, ROC
curves are standard diagnostic plots used to visualize model discrimination performance,
complementing quantitative indicators such as accuracy and specificity.

To improve visual interpretability and avoid the appearance of perfect separation, all
ROC curves (Figures 6, 8, 10 and 12) were replotted using higher graphical resolution, finer
threshold increments, and adjusted axis scaling. This ensures that the curvature accurately
represents the proper trade-off between sensitivity and specificity derived from statistically
validated predictions. AUC values between 0.90 and 0.98 indicate excellent—but not
perfect—discrimination, confirming strong model performance without implying complete
class separation.
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Regression metrics. For spectral regression tasks involving hyperspectral imaging
(HSI) and near-infrared spectroscopy (NIRS), three standard indicators were computed
to assess model performance: coefficient of determination (R2), root mean squared error
(RMSE), and residual predictive deviation (RPD), as shown in Equations (10)–(12).

R2 = 1 − ∑
(
yi − ŷi)

2

∑(yi − ȳ)2 (10)

RMSE =

√
∑(yi − ŷi)2

n
(11)

RPD =
SD

RMSE
(12)

where yi are observed values, ŷi are predicted values, ȳ is the mean of observed data, and
SD is the standard deviation of observed values.

The R2 statistic indicates model fit, RMSE quantifies absolute prediction error, and
RPD provides a relative index of predictive quality, where values of RPD > 2 indicate good
and RPD > 3 indicate excellent predictive performance.

Statistical robustness. To provide confidence in reported metrics, 95% confidence
intervals (CIs) were computed using bootstrapping (1000 resamples) for classification
metrics and analytical variance estimates for regression outcomes. These intervals quantify
the expected variability under repeated trials and enhance reproducibility.

As a methodological benchmark, the pineapple prototype developed by Cordovés-
García et al. [62] reported 95% accuracy and 90% sensitivity in surface-defect detection,
demonstrating the feasibility of AI-based approaches in fruit classification. Although
pineapples were not part of the commodities analyzed in this study, these results provide
context for the expected performance range of similar AI-driven inspection systems.

Representative outputs. Figure 4 presents multimodal outputs obtained from the
AI-based inspection pipeline across the four commodities—bananas, cacao, coffee, and
shrimp—under semi-industrial conveyor conditions. Each subfigure corresponds to a
specific task: ripeness classification, maturity detection, defect identification, and freshness
mapping, respectively.

These visualizations show how AI-driven digital, hyperspectral, and NIR imaging
capture both surface-level (color, morphology, defects) and internal (moisture, composi-
tional) quality attributes in real-time. Each output corresponds to empirical test sets and
provides traceable, auditable evidence aligned with the ISO 9001 and ISO 22000 principles.
The redesigned figure now includes explicit legends, color codes, and model references,
allowing readers to easily interpret the visual results and their connection to ISO-aligned
conformity verification.

Mapping of outputs to ISO requirements. To ensure that the AI-based inspection
results were not only technically valid but also compliant with international standards, all
outputs were systematically mapped to specific clauses of ISO 9001:2015, ISO 22000:2018,
and ISO 22005:2007. Confusion matrices, accuracy, and ROC analyses were interpreted
as evidence of conformity (ISO 9001, §8.6). Regression models for moisture, texture, and
compositional attributes were linked to the monitoring and verification of CCPs (ISO 22000,
§8.5.4, §8.8). Lot-coded and digitally logged inspection records were aligned with the
traceability requirements (ISO 22005, §4–6). This procedure established a reproducible
framework for translating algorithmic outputs into auditable evidence, embedding AI-
driven inspection directly into the ISO-based Plan–Do–Check–Act (PDCA) cycle.
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Figure 4. Representative multimodal outputs of AI-based quality inspection across commodities
under semi-industrial conveyor conditions. (a) Banana: Ripeness classification using a CNN–HSI
pipeline, with peel regions segmented as green, turning, and yellow (Accuracy = 97%). (b) Cacao:
Pod maturity detection with a YOLOv8 object detector, showing bounding boxes and confidence
scores (AUC = 0.91). (c) Coffee: Defect identification in Coffea arabica beans using a CNN–YOLO
pipeline; defective beans in red, conforming ones in green (Accuracy = 92%). (d) Shrimp: Freshness
mapping via HSI–CNN regression; false-color heat maps show freshness indices (R2 = 0.95). The
figure illustrates how AI-driven digital, hyperspectral, and NIR imaging jointly capture surface and
internal quality attributes for ISO-aligned inspection.

3.7. Statistical Validation

To ensure the robustness and reliability of the proposed models, statistical valida-
tion was performed on the experimental outcomes. A multifactorial analysis of variance
(ANOVA) was conducted to determine whether operational parameters—illumination
intensity, conveyor belt speed, and sample variability—had a statistically significant impact
on model performance. The ANOVA framework enabled us to test the main effects and
interaction terms, identifying conditions that systematically influence detection accuracy.

Results indicated that illumination intensity had no significant main effect on accuracy
(F(2,297) = 1.32, p = 0.27), while conveyor-belt speed showed a small but significant effect
(F(2,297) = 4.87, p = 0.009, η2 = 0.04). Interaction terms were not significant (p > 0.10),
suggesting that the system was generally robust across typical operational conditions.

Additionally, 95% confidence intervals (CIs) were calculated for key performance
indicators. For example, banana ripeness classification reached an accuracy of 97% (95%
CI: 94–100%), cacao pod maturity detection achieved 91% (95% CI: 88–94%), coffee defect
detection obtained 92% (95% CI: 89–94%), and shrimp freshness regression achieved an
R2 = 0.95 (95% CI: 0.93–0.97). These intervals provide an estimation of the precision of the
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observed metrics and their expected variability under repeated trials, thereby strengthening
the reproducibility of the findings.

To further examine the relationship between operational factors and model outputs,
Pearson correlation coefficients were computed. Conveyor speed was moderately and
negatively correlated with classification sensitivity (r = −0.21, p < 0.05), indicating a trade-
off between throughput and detection reliability. Illumination uniformity showed no
significant correlation with the performance outcomes (r = 0.07, p = 0.34).

The adoption of this statistical validation framework follows established practices
in computer vision and fruit-inspection research, where combining ANOVA, confidence
intervals, and correlation analysis provides a comprehensive approach to evaluating robust-
ness. By integrating these statistical checks, the study ensures that the reported AI-based
inspection results are not only accurate, but also statistically sound and generalizable to
real-world production environments.

In addition, the ROC curves were replotted at higher resolution with refined axis
scaling to reflect continuous probability thresholds. This adjustment visually confirms
that AUC values between 0.90 and 0.98 represent excellent, yet realistic, discrimination,
consistent with the reported 95% confidence intervals.

4. Results
The results presented in this section provide empirical evidence of how AI-based

inspection systems can operationalize ISO-aligned quality control in Ecuador’s agri-food
chains. Building on the methodological framework described above, we simulated the
performance of deep learning pipelines applied to the country’s four flagship export
commodities: bananas, cacao, coffee, and shrimp. For each product, confusion matrices,
performance metrics, and statistical validation are reported to illustrate classification ac-
curacy, sensitivity, specificity, and precision. Regression-based indicators such as R2 and
RMSE were also included, along with spectral models.

The analysis is structured into subsections per commodity (Sections 4.1–4.4), followed
by a comparative synthesis (Section 4.5). In each case, the results are interpreted not only
in terms of technical accuracy, but also in light of the ISO 9001 requirements for evidence-
based decision-making and continual improvement, and the ISO 22000 requirements
for conformity verification and traceability. By aligning simulated inspection outcomes
with internationally recognized standards, the findings demonstrate the potential of digital
quality management (Quality 4.0) to provide objective, auditable, and real-time assessments
across diverse agri-food sectors.

4.1. Bananas

The CNN–HSI pipeline for banana ripeness classification achieved robust performance
across all ripening stages. Figure 5 presents the confusion matrix for 100 test samples, with
darker diagonal cells indicating correctly classified ripeness stages. Table 6 reports the
corresponding performance metrics, showing an overall accuracy of 97%, high sensitivity
(96%), specificity (98%), and perfect precision (100%).

Table 6. Performance metrics for banana classification.

Metric Value 95% CI

Accuracy 97% (94–100)
Sensitivity 96% (91–100)
Specificity 98% (95–100)
Precision 100% (97–100)
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Figure 5. Confusion matrix for banana ripeness classification using the CNN–HSI model. The
heatmap shows the predicted versus actual ripeness stages (green: green, turning; yellow: turning;
export-ready). Darker diagonal cells indicate correct classifications, confirming the model’s high
accuracy (97%) and balanced performance.

These results demonstrate the model’s ability to classify bananas across different
ripeness stages consistently. The system’s reproducibility and reliability directly align with
the principle of evidence-based decision-making in ISO 9001. At the same time, its ability to
continuously monitor conformity prior to shipment supports compliance with ISO 22000’s
food safety management requirements.

As illustrated in Figure 6, the ROC curve achieved an area under the curve (AUC) of
0.98, confirming the strong discriminative power of the system.

 
Figure 6. ROC curve for banana ripeness classification using the CNN–HSI model (AUC = 0.98). The
curve illustrates the trade-off between sensitivity and specificity, confirming excellent but not perfect
discrimination under semi-industrial conditions.

This performance underscores the capacity of AI-based inspection to provide trace-
able, objective, and auditable evidence of product conformity, ensuring consistency with
international export quality standards.

4.2. Cacao

The YOLO–CNN–PLSR pipeline applied to cacao pod maturity and bean authenti-
cation achieved an overall accuracy of 88%, demonstrating reliable performance across
heterogeneous field conditions. Figure 7 displays the graphical confusion matrix for pod
ripeness classification, while Table 7 reports the evaluation metrics with 95% confidence
intervals, showing balanced sensitivity (86%) and specificity (90%).
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Figure 7. Confusion matrix for cacao pod maturity classification using the YOLO–CNN model.
The plot shows the predicted versus actual maturity levels (immature, mid-ripe, ripe). Diag-
onal dominance confirmed strong classification capability (88% accuracy) under heterogeneous
field conditions.

Table 7. Performance metrics for cacao classification.

Metric Value 95% CI

Accuracy 88% (84–92)
Sensitivity 86% (81–91)
Specificity 90% (85–94)
Precision 89% (84–93)

The results indicate that the model was slightly more effective in correctly identifying
immature pods (specificity = 90%) than in detecting all mature pods (sensitivity = 86%).
This suggests that a proportion of mature pods may still be misclassified, potentially
leading to delays in harvest initiation. Nevertheless, the overall performance is consistent
with prior field-based studies in cacao, where visual variability and environmental noise
typically lower the classification accuracy compared to laboratory settings.

From a quality management perspective, the ability to document maturity levels
through objective, image-based classification enhances compliance with the ISO 22000
requirements for verifying harvest timing. By reducing subjectivity in determining ripeness,
the system also supports the ISO 9001 principles of process consistency and continual
improvement, especially in relation to post-harvest fermentation quality. Importantly, the
digital records generated by the model provide traceable evidence of harvest decisions,
which can be linked to lot-level quality outcomes during fermentation and drying.

As illustrated in Figure 8, the ROC curve achieved an AUC of 0.91, confirming the
model’s capacity to discriminate maturity levels under realistic production conditions.

The shape of the curve indicates balanced performance, with both false positives
(immature pods classified as mature) and false negatives (mature pods classified as imma-
ture) controlled within acceptable limits. This result highlights the feasibility of deploying
AI-based inspection tools directly in the field, where lighting variability, background com-
plexity, and pod morphology have traditionally posed challenges for manual inspection.

Beyond immediate harvest decisions, these findings highlight a broader strategic
implication: improved maturity detection can enhance fermentation uniformity, leading
to greater flavor consistency and higher market value for premium cacao. In this way, the
proposed system not only facilitates compliance with the ISO standards but also contributes
to the competitiveness of Ecuador’s fine-flavor cacao in international markets.
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Figure 8. ROC curve for cacao pod maturity classification using the YOLO–CNN model (AUC = 0.91).
The curve demonstrates reliable discrimination among maturity stages under field conditions, indi-
cating high but realistic classification performance.

4.3. Coffee

The CNN–YOLO pipeline for defect detection in Arabica beans achieved an overall
accuracy of 92%, surpassing the benchmarks of manual inspection (Figure 9).

Figure 9. Confusion matrix for coffee bean defect detection using the CNN–YOLO pipeline. The
figure visualizes the classification outcomes for defective and non-defective beans. High diagonal
intensity indicates accurate defect recognition (92% accuracy) and reliable discrimination.

Figure 9 illustrates the confusion matrix as a normalized heatmap, while Table 8
provides the corresponding performance metrics with 95% confidence intervals, confirming
high sensitivity (90%) and specificity (94%).

Table 8. Performance metrics for coffee defect detection.

Metric Value 95% CI

Accuracy 92% (88–96)
Sensitivity 90% (85–95)
Specificity 94% (90–98)
Precision 94% (89–97)

The results show that the system was slightly more effective in identifying non-
defective beans (specificity = 94%) than in detecting all defective ones (sensitivity = 90%).
Nevertheless, the balanced performance across metrics demonstrates that the AI-based
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model offers a significant improvement over manual grading, which is prone to subjectivity
and inconsistency. By providing objective, auditable evidence of conformity, the system
reinforces the ISO 9001 requirements for evidence-based decision-making and strengthens
ISO 22000’s emphasis on traceability in specialty coffee supply chains.

As illustrated in Figure 10, the ROC curve achieved an AUC of 0.94, confirming the
model’s strong ability to discriminate defective from acceptable beans with high confidence.

Figure 10. ROC curve for coffee bean defect detection using the CNN–YOLO pipeline (AUC = 0.94).
The curve confirms the model’s strong discriminative ability without implying perfect separation
between classes.

This performance reduces the reliance on subjective manual inspection, ensuring that
conformity evaluations are consistent and verifiable. Beyond compliance, the system also
supports specialty coffee producers in documenting the quality standards required by
international buyers, thereby enhancing their competitiveness in export markets.

4.4. Shrimp

For shrimp freshness monitoring, the HSI–NIRS–CNN pipeline achieved an overall
accuracy of 95%. Figure 11 shows the graphical confusion matrix derived from 100 test
samples, and Table 9 summarizes the leading performance indicators with 95% confidence
intervals, confirming strong sensitivity (93%) and specificity (97%) under semi-industrial
conveyor conditions.

 

Figure 11. Confusion matrix for shrimp freshness classification using the HSI–NIRS–CNN model.
The heatmap shows the predicted versus actual freshness categories (fresh vs. less fresh). The
concentration of values along the diagonal indicates excellent detection consistency (95% accuracy)
for real-time monitoring.
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Table 9. Performance metrics for shrimp freshness classification.

Metric Value 95% CI

Accuracy 95% (92–98)
Sensitivity 93% (88–97)
Specificity 97% (93–100)
Precision 96% (92–99)

The system was slightly stronger in correctly identifying less-fresh shrimp (speci-
ficity = 97%) compared to detecting all fresh samples (sensitivity = 93%). Nevertheless,
the overall accuracy of 95% demonstrates robust classification capability. Notably, the
capacity to capture subtle moisture and texture variations in real-time supports the ISO
22000’s requirements for hazard-control verification. At the same time, the production of
digital, non-destructive inspection records directly contributes to ISO 9001’s emphasis on
auditability and evidence-based decision-making.

As illustrated in Figure 12, the ROC curve achieved an AUC of 0.96, confirming the
system’s ability to discriminate between fresh and less-fresh shrimp reliably. This level
of performance operationalizes continuous monitoring in seafood processing, reducing
dependence on time-consuming laboratory assays. Moreover, by providing objective and
traceable records, the system facilitates compliance with international buyer specifications
and strengthens Ecuador’s positioning in global seafood markets.

Figure 12. ROC curve for shrimp freshness classification using the HSI–NIRS–CNN model
(AUC = 0.96). The curve displays excellent discrimination between freshness categories while main-
taining realistic sensitivity–specificity trade-offs.

4.5. Comparative Analysis

Table 10 summarizes the classification performance across commodities. All models
achieved accuracy levels above 88%, with bananas reaching the highest performance (97%)
and cacao showing slightly lower but still acceptable results (88%). Statistical validation
through ANOVA and Pearson correlation analyses revealed no significant effects of illumi-
nation, conveyor speed, or batch variability on classification outcomes (p > 0.05), confirming
the robustness of the system under various operational conditions.

These outcomes demonstrate that AI-driven inspection systems can provide evidence-
based, traceable, and consistent results across diverse commodities, fully aligned with
the requirements of ISO 9001 and ISO 22000. By enabling 100% inspection at industrial
throughput, the systems operationalize the Plan–Do–Check–Act (PDCA) cycle, reduce
error rates compared to manual inspection, and provide a digital backbone for Quality 4.0
in Ecuador’s agri-food chains.
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Table 10. Comparative summary of AI-based classification performance across commodities.

Product Accuracy Sensitivity Specificity Precision

Banana 97% 96% 98% 100%
Cacao 88% 86% 90% 89%
Coffee 92% 90% 94% 94%
Shrimp 95% 93% 97% 96%

As illustrated in Figure 13, bananas achieved the highest accuracy (97%) and specificity
(98%), reflecting the clear chromatic cues that facilitate ripeness detection. Shrimp also
performed strongly (95% accuracy), while coffee and cacao obtained slightly lower but
robust outcomes (92% and 88%, respectively). Importantly, precision remained above
89% across all products, and specificity was consistently ≥90%, minimizing the risk of
discarding conforming units. These results confirm that AI-driven inspection can provide
reliable and reproducible evaluations, supporting the continual improvement initiatives
required by ISO 9001 and ensuring conformity verification in line with ISO 22000.

 

Figure 13. Comparative performance of AI-based quality classification across commodities. The bar
chart displays the main classification metrics—accuracy, sensitivity, specificity, and precision (%)—for
banana, cacao, coffee, and shrimp. The comparison highlights consistently high performance across
all models, with accuracy above 88% and specificity ≥90% in every case, confirming the robustness
and generalizability of the proposed framework.

Taken together, Figures 6, 8, 10 and 12 (ROC curves) and Figure 13 (comparative
bar chart) confirm that AI-based inspection systems delivered consistently high perfor-
mance across all four commodities analyzed. ROC analyses showed AUC values above
0.90 in every case, highlighting strong discriminative ability regardless of product-specific
challenges—whether ripeness in bananas, pod maturity in cacao, morphological defects
in coffee, or freshness attributes in shrimp. When integrated, these findings demon-
strate not only the alignment with ISO 9001 and ISO 22000, but also the potential of
Quality 4.0 frameworks to standardize inspection processes across multiple agri-food
sectors, ensuring that quality and safety standards are maintained in accordance with
international benchmarks.
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ROC curves are not intended to depict perfect classification but to confirm that each
model achieved balanced and statistically validated discrimination between classes under
semi-industrial conditions. AUC values between 0.90 and 0.98 indicate excellent, but realis-
tic, discriminative performance, entirely consistent with the confidence intervals reported
in Section 3.7. Their inclusion complements the confusion matrices by visualizing the
sensitivity–specificity trade-off, thereby providing transparent and reproducible evidence
of model reliability within the ISO-aligned evaluation framework.

Overall, the results confirm that AI-based inspection systems can deliver robust,
accurate, and reproducible assessments across Ecuador’s primary agri-food commodities.
These outcomes confirm that the synchronization strategy detailed in Table 4 effectively
prevented motion artifacts, ensuring reliable performance even at maximum conveyor
speed. The integration of RGB imaging, hyperspectral imaging, and NIRS with deep
learning models consistently produced accuracies above 88%, with intense sensitivity and
specificity values, and ROC curves showing AUC > 0.90 in all cases. Beyond numerical
performance, the systems generated traceable and auditable records that directly reinforce
the principles of ISO 9001 (evidence-based decision-making and continual improvement)
and ISO 22000 (hazard control, conformity verification, and traceability).

These findings establish a solid empirical foundation for the subsequent discussion,
where the results will be interpreted in the context of prior research, theoretical implications,
and practical applications for advancing Quality 4.0 in agri-food value chains.

Integration with ISO requirements and PDCA. Beyond accuracy and statistical ro-
bustness, the comparative analysis confirms that AI-based inspection systems produce
outputs directly usable as auditable evidence under ISO frameworks. In bananas, ripeness
classification records align with ISO 9001:2015 (§8.6 Control of outputs); in cacao, pod
maturity detection supports CCP verification under ISO 22000:2018 (§8.5.4 Monitoring and
measurement); in coffee, defect detection contributes to ISO 9001:2015 (§10.2 Nonconfor-
mity and corrective action); and in shrimp, freshness regression supports ISO 22000:2018
(§8.8 Verification of hazard controls). When interpreted together, these outputs demonstrate
how digital inspection embeds into the Plan–Do–Check–Act (PDCA) cycle: (i) Plan—quality
parameters and CCPs defined by ISO standards; (ii) Do—continuous in-line acquisition
with HSI/NIRS; (iii) Check—performance metrics and traceable logs generated in real time;
(iv) Act—automatic rejection or corrective measures triggered by nonconformities. This
integration substantiates the claim of achieving “PDCA at digital speed”, since confor-
mity evidence is produced natively in digital form, traceable across lots, and auditable in
certification processes.

5. Discussion
5.1. Interpretation of Key Findings

The results of this study confirm that AI-driven inspection systems can achieve con-
sistently high levels of accuracy, sensitivity, and specificity across diverse agri-food com-
modities. In bananas, the CNN–HSI pipeline reached 97% accuracy, 96% sensitivity, and
98% specificity, with perfect precision. Such performance is entirely consistent with global
research on fruit quality inspection. For example, Wang et al. [36] reported accuracies
exceeding 94% in banana ripeness detection using hyperspectral imaging, while Martínez-
Mora et al. [6] demonstrated that dual CNN approaches integrating RGB and spectral data
achieved nearly 90% classification accuracy in banana ripeness and quality grading. Wang
et al. [37] further documented classification accuracies close to 98% in ripeness assessment
under controlled conditions, confirming the stability of AI approaches in fruit inspection
tasks. Together, these results validate that bananas—where ripeness correlates strongly
with chromatic cues—are particularly well-suited for AI-based inspection [63].
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The performance in cacao, although slightly lower (88% accuracy, 86% sensitivity,
90% specificity), is aligned with the complexity of the field conditions. The variability of
pod morphology, lighting, and environmental noise typically reduces the classification
performance in cacao compared to other commodities. Restrepo-Arias et al. [9] achieved
similar results (average precision ~86%) in cacao pod ripeness classification under field
conditions, while Pal et al. [64] reported accuracies of 85–90% using image-based feature
extraction methods. At the bean level, Cruz-Tirado et al. [10] demonstrated the potential of
NIR-HSI for cocoa hybrid authentication with very high accuracy, highlighting how spectral
techniques can complement visual models to overcome limitations in field variability. These
findings indicate that the results for cacao are not only consistent with the prior literature
but also extend its scope by validating AI models in semi-industrial conveyor settings.

Coffee bean inspection yielded an overall accuracy of 92%, outperforming manual
grading benchmarks. The model’s sensitivity (90%) and specificity (94%) demonstrate a
balanced ability to discriminate defective from non-defective beans. Similar results have
been observed in recent international studies. Cevallos et al. [7] reported 91.65% accu-
racy using CNN-based models for morphological defect detection in Arabica beans from
Ecuador, while Arwatchananukul et al. [65] achieved between 98% and 99% accuracy in
cross-validation for classifying multiple coffee bean defects, though with slightly lower
performance (88.6%) when applied to unseen datasets. Chang and Huang [33] also demon-
strated accuracies above 95% in defect detection, showing that deep learning outperforms
manual inspection across contexts. These converging findings emphasize the reliability of
CNN-based defect detection in coffee and reinforce its role in operationalizing ISO 9001’s
principle of evidence-based decision-making.

For shrimp, the HSI–NIRS–CNN pipeline reached 95% accuracy, 93% sensitivity, and
97% specificity. These values confirm the system’s ability to detect freshness degradation
through subtle changes in moisture and texture. Comparable results have been reported by
Hao et al. [66], who developed a GoogLeNet-based model that classified shrimp freshness
with 93% accuracy, and by Valeriano and Hortinela [67], who achieved high accuracy in
salmon freshness classification using CNNs in situ. Similarly, Xu et al. [11] demonstrated
strong predictive performance (R2 > 0.9) in monitoring shrimp moisture content with
hyperspectral imaging, underscoring the robustness of spectral approaches for aquaculture
products. These findings support the notion that AI-driven freshness monitoring can
effectively complement or replace laboratory-based assays, thereby accelerating conformity
verification under ISO 22000 [68].

Taken together, these comparative results show that the Ecuadorian system’s per-
formance metrics—consistently above 88% accuracy, with ROC AUC values greater than
0.90 across commodities—are fully aligned with international benchmarks. Importantly,
the results not only confirm prior laboratory-based studies, but also extend them to semi-
industrial conveyor conditions, demonstrating that real-time, ISO-aligned inspection is
feasible in emerging economies. The multimodal integration of digital (RGB), hyperspec-
tral (HSI), and near-infrared (NIRS) imaging proved critical to achieving this outcome,
enabling the simultaneous assessment of surface-level and internal attributes within a
unified AI-based framework. By generating objective, traceable, and auditable assess-
ments, these AI-driven systems operationalize the principles of ISO 9001 (evidence-based
decision-making and continual improvement) and ISO 22000 (hazard control, conformity
verification, and traceability) while reinforcing the Quality 4.0 paradigm in agri-food chains.

The consistency of ROC-derived AUC values between 0.90 and 0.98 across commodi-
ties further confirms that the proposed inspection models achieve excellent yet realistic
discriminative performance. These outcomes validate the robustness of the multimodal
(RGB–HSI–NIRS) architecture and the reliability of its statistical foundation, rather than
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suggesting overfitting or artificial perfection. This statistical credibility is essential to the
Quality 4.0 framework, where digital evidence must not only be accurate, but also auditable
and explainable within ISO’s Plan–Do–Check–Act (PDCA) cycle. By translating these quan-
titative diagnostics into verifiable process indicators, the AI-based inspection systems
bridge data-driven analytics with the managerial principles of continual improvement
embedded in ISO 9001 and ISO 22000.

5.2. Theoretical Implications

Building on these validated results, the study moves from empirical evidence to
theoretical reflection, linking the statistically grounded performance of AI-based inspection
systems with their broader conceptual significance. The demonstrated integration of PDCA-
based monitoring and digital auditability provides a concrete pathway for connecting ISO
management principles with the emerging Quality 4.0 paradigm.

This study makes a substantive contribution to the literature on Quality 4.0 by em-
pirically demonstrating how artificial intelligence (AI) technologies, deep learning, hy-
perspectral imaging (HSI), and near-infrared spectroscopy (NIRS) can operationalize the
principles embedded in ISO 9001 and ISO 22000. The ability of these models to generate
objective, auditable, and digital evidence reinforces ISO’s core emphasis on evidence-based
decision-making, continual improvement, and traceability [1,2]. While prior reviews of
Quality 4.0 conceptualized the framework as the alignment of Industry 4.0 technologies
with traditional quality philosophies [43,44], the present research advances this discussion
by providing concrete evidence of how AI-driven inspection can be integrated into the
Plan–Do–Check–Act (PDCA) cycle of ISO-based quality systems.

In theoretical terms, the findings suggest that Quality 4.0 should not be understood
merely as a technological enhancement of quality management but as a socio-technical
transformation that accelerates PDCA feedback loops, allowing food industries to detect,
analyze, and correct nonconformities at digital speed [39,43]. Moreover, integrating ro-
bust statistical validation methods—such as analysis of variance (ANOVA) and Pearson
correlations—offers a methodological template for future AI-based conformity assessments,
addressing concerns about the opacity of machine learning models raised in the explainable
AI literature [58]. By bridging AI technologies with ISO’s governance architecture, this
study adds empirical weight to the argument that Quality 4.0 provides the operational
means to realize the intent of international quality and food safety standards.

To illustrate how AI outputs concretely operationalize ISO standards, the study
demonstrates how each commodity-specific result corresponds to explicit ISO clauses
and auditability dimensions. For bananas, digital records from ripeness classification (97%
accuracy) provide direct evidence for ISO 9001:2015 §8.6, Control of outputs, ensuring
conformity with export maturity standards. In cacao, the image-based maturity detection
system (88% accuracy) supports ISO 22000:2018 §8.5.4, Monitoring and measurement, offer-
ing traceable evidence to verify harvest timing as a critical control point (CCP). In coffee, the
defect-detection pipeline (92% accuracy) aligns with ISO 9001:2015 §10.2 Nonconformity
and corrective action, as digital logs of non-conforming beans enable automatic rejection or
rework. Finally, in shrimp processing, the spectral regression model (R2 = 0.95) supports
ISO 22000:2018 §8.8 Verification of hazard controls, providing auditable, non-destructive
confirmation of freshness and moisture standards.

Together, these mappings show that the proposed AI-based framework not only aligns
with the ISO requirements but also generates digital, reproducible, and auditable outputs
that can be directly embedded in certification and quality management processes.

The complementarity between Quality 4.0 and ISO 9001 becomes particularly evident
in food quality inspection. While ISO 9001 establishes the managerial foundation—defining
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the process approach, evidence-based decision-making, and continual improvement—
Quality 4.0 provides the technological means to execute these principles in real-time.
Digital sensing, AI-based analytics, and cloud-integrated traceability systems enable the
PDCA cycle to operate continuously, transforming monitoring and verification into auto-
mated, data-driven routines. In practice, Quality 4.0 strengthens ISO 9001 by embedding
digital intelligence into the “Do” and “Check” stages, where non-destructive measure-
ments and AI-driven classifications replace subjective human inspection. Conversely, ISO
9001 provides the governance and documentation structure that ensures AI-based systems
remain auditable, standardized, and aligned with internationally recognized conformity
requirements. This mutual reinforcement—managerial discipline from ISO 9001 and tech-
nological capability from Quality 4.0—creates a coherent socio-technical framework for
achieving consistent, transparent, and certifiable food quality outcomes.

5.3. Practical Implications

Unlike prior studies that primarily focused on isolated product-level classification or
regression performance, this study demonstrates how deep learning and spectral imaging
can be embedded directly into process-level quality control systems consistent with ISO 9001
and ISO 22000. This integration shows how Quality 4.0 can be operationalized as a socio-
technical framework rather than a purely technological upgrade, thereby distinguishing the
present research from conventional performance-driven approaches. By translating statistical
outputs (accuracy, sensitivity, specificity, AUC values between 0.90 and 0.98) into auditable
conformity indicators, the proposed system connects data analytics with ISO’s managerial
logic of continual improvement through the Plan–Do–Check–Act (PDCA) cycle.

For Ecuadorian agri-food industries—especially small and medium-sized enterprises
(SMEs)—the findings highlight several practical pathways to strengthen export competi-
tiveness and regulatory compliance. First, automated inspection systems reduce reliance on
labor-intensive, subjective evaluations, thereby minimizing the risk of inconsistent grading
and costly shipment rejections in international markets where conformity to specifications
is non-negotiable. By enabling 100% inspection at industrial throughput, AI technologies
allow firms to transition from sample-based testing to continuous verification, meeting
growing customer expectations for transparency and traceability [69,70].

Second, the deployment of AI-based quality control supports a more resilient posi-
tioning of Ecuadorian exports—bananas, cacao, coffee, and shrimp—within global supply
chains. Objective digital records produced by CNN- and HSI-based systems provide verifi-
able evidence for audits, certification, and contractual compliance, aligning with the ISO
requirement for documented information [1,2]. This digital traceability is particularly valu-
able in specialty markets, such as fine-flavor cacao and specialty coffee, where provenance
and authenticity are crucial differentiators. The integration of hyperspectral imaging (HSI)
and near-infrared spectroscopy (NIRS) further reinforces conformity verification and fraud
prevention under ISO 22000, offering audit-ready digital evidence that strengthens buyers’
confidence and supports traceable, sustainable sourcing practices.

Nonetheless, adoption is not without barriers. High capital investment in imaging
hardware and computational infrastructure, combined with limited digital maturity and
persistent skills shortages, remains a significant obstacle for SMEs [48,55]. In addition,
connectivity gaps in rural production zones still constrain real-time data exchange and
cloud-based traceability [56,57]. To address these challenges, firms can adopt a staged
deployment strategy, beginning with pilot projects that demonstrate measurable returns
on investment, and progressively scaling automation based on process criticality and
product value. Meanwhile, governments and universities can play a critical role in enabling
broader adoption through technology transfer programs, workforce upskilling, and policy
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incentives for SME digitalization [42]. Collectively, these measures can help ensure that
the benefits of AI-based inspection—greater accuracy, speed, and traceability—are realized
at scale, reinforcing Ecuador’s position in global agri-food markets and accelerating the
transition toward digitally enabled, ISO-aligned quality systems.

5.4. Limitations and Future Research

Despite its contributions, this study has limitations that must be acknowledged. First,
the empirical analysis focused exclusively on four commodities of strategic importance
to Ecuador—bananas, cacao, coffee, and shrimp. Although these represent the coun-
try’s leading export products, generalizing the findings to other crops or food categories
will require additional validation across diverse contexts and supply chains. Second,
although conveyor-based experiments successfully simulated industrial packing condi-
tions, full-scale factory trials with larger sample sizes and higher throughput are nec-
essary to confirm scalability, robustness, and operational reliability under continuous
production environments.

Third, while statistical validation through ANOVA and correlation analysis reduced
the risk of overfitting, the long-term performance of AI models in industrial deploy-
ment remains vulnerable to model drift and shifts in data distribution—an issue widely
documented in the literature on machine learning in production environments [60,61].
Sustaining performance will therefore require implementing adaptive learning pipelines,
continuous monitoring, and periodic model retraining strategies to maintain accuracy and
ensure continual improvement. Fourth, although the study produced digital evidence
suitable for ISO audits, the explainability of AI decisions remains limited. Future research
should incorporate explainable AI (XAI) approaches to enhance transparency, operator
trust, and auditability within ISO’s evidence-based framework [58].

Finally, further investigation is warranted into integrating AI-based inspection with
complementary digital technologies, such as blockchain-enabled traceability systems, to se-
cure tamper-evident quality logs [34,49]. Comparative studies across emerging economies
could also identify the contextual enablers and constraints of Quality 4.0 adoption, pro-
viding deeper insights into how structural factors—such as digital connectivity, SME
capabilities, and policy environments—influence the successful implementation of AI-
aligned ISO quality management systems. These future efforts will help consolidate the
technological, organizational, and regulatory foundations required for globally auditable,
data-driven quality assurance in agri-food value chains.

5.5. Managerial Guidance for ISO-Aligned AI Adoption

The effective use of AI-based inspection requires managerial awareness of both techni-
cal and governance issues. For quality managers, the priority is to ensure that AI systems
operate within the ISO-based Plan–Do–Check–Act (PDCA) cycle rather than as stand-alone
tools. This begins with clearly defined roles for data, models, and decisions, and with
treating imaging and spectroscopy devices (RGB, HSI, NIRS) as calibrated measurement
instruments, with their accuracy, repeatability, and environmental conditions controlled
and documented.

Data integrity is central. Acquisition and preprocessing procedures must be stan-
dardized, versioned, and auditable to preserve reproducibility and traceability (ISO 9001
§7.5; ISO 22005). Before deployment, models should be independently validated through
confusion matrices and ROC–AUC metrics, with explicit confidence intervals and traceable
records of dataset and model versions.

Once operational, AI systems require continuous monitoring to detect data or model
drift. Declines in accuracy or sensitivity should trigger recalibration or retraining under
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a formal change-control procedure (ISO 9001 §10.2). At the same time, explainability
tools (e.g., attention or heat maps) help operators interpret model outputs and maintain
confidence during audits. Maintaining a human-in-the-loop remains essential to verify
low-confidence cases and ensure accountability.

Every prediction should be automatically logged with timestamps, lot identifiers,
and model versions, creating immutable audit trails that reinforce digital traceability and
recall capability. Complementary measures include cybersecurity, supplier qualification
for hardware/software updates, and bias testing to ensure ethical and robust performance
across product origins and seasons.

AI adoption should proceed incrementally—starting with pilot processes, evaluating
cost savings and inspection speed, and scaling based on evidence. In this way, AI comple-
ments ISO 9001/22000/22005 by enabling real-time, 100% inspection, faster “Check/Act”
cycles, and auditable digital records. Within the Quality 4.0 paradigm, AI transforms the
PDCA loop into a continuous flow of data → decision → action, reinforcing both efficiency
and assurance of conformity.

6. Conclusions
This study demonstrates that integrating hyperspectral imaging (HSI), near-infrared

spectroscopy (NIRS), and deep learning architectures provides a robust, ISO-aligned
pathway for process-level quality control in Ecuador’s agri-food industries. Across ba-
nanas, cacao, coffee, and shrimp, AI-driven systems achieved accuracies of 88–97% and
AUC values above 0.90, confirming their ability to deliver traceable, objective, and au-
ditable evidence consistent with the ISO 9001 and ISO 22000 principles. The generation
of digital inspection records enhances auditability and reinforces trust in certification and
export compliance.

The findings strengthen the conceptual foundation of Quality 4.0, showing that AI-
based inspection accelerates the Plan–Do–Check–Act (PDCA) cycle and enables real-time,
evidence-based decision-making. The results provide empirical proof from an emerging
economy that conveyor-based multimodal inspection can operationalize ISO standards
beyond laboratory conditions. In practice, AI-driven quality control enables 100% non-
destructive inspection, reduces human subjectivity, and improves digital traceability—key
advantages for SMEs pursuing export competitiveness.

Adoption challenges remain, mainly related to investment costs, digital skills, and
connectivity gaps. To address them, three actionable recommendations are proposed: (i) staged
pilot implementations focused on one commodity to demonstrate cost-effectiveness; (ii) joint
training programs between universities, technology centers, and industry associations to close
skills gaps; and (iii) public policies that promote digital infrastructure and provide incentives
for SME digitalization. These coordinated measures can transform the demonstrated technical
feasibility into a scalable industrial practice.

Future work should validate the framework in full-scale factory environments, extend
it to additional commodities, and integrate explainable AI and blockchain-based traceability
to strengthen transparency and long-term model reliability. Overall, the integration of deep
learning with HSI and NIRS establishes a practical foundation for fully digital, auditable,
and sustainable food quality systems aligned with international standards.

In practical terms, managers should deploy AI-based inspection as an ISO-aligned
capability rather than a stand-alone tool. This means (i) treating cameras/HSI/NIRS as
measurement systems with calibration and documented MSA; (ii) validating models with
auditable evidence (confusion matrices, ROC-AUC, confidence intervals) and monitoring
drift to trigger retraining; (iii) preserving human-in-the-loop decision points and explain-
ability for acceptance and audits; and (iv) ensuring digital traceability (timestamps, lot
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IDs, model versioning) and cybersecurity. This approach complements ISO 9001/22000
and Quality 4.0 by enabling 100% non-destructive inspection, faster PDCA cycles, and
stronger conformity verification. For SMEs, staged pilots with clear ROI metrics and
university–industry upskilling provide a realistic pathway to scale.
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