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Abstract

The increasing complexity of modern food production demands advanced solutions for
quality control (QC), safety monitoring, and process optimization. This review systemati-
cally explores recent advancements in machine learning (ML) for QC across six domains:
Food Quality Applications; Defect Detection and Visual Inspection Systems; Ingredient
Optimization and Nutritional Assessment; Packaging—Sensors and Predictive QC; Sup-
ply Chain—Traceability and Transparency and Food Industry Efficiency; and Industry
4.0 Models. Following a PRISMA-based methodology, a structured search of the Scopus
database using thematic Boolean keywords identified 124 peer-reviewed publications
(2005-2025), from which 25 studies were selected based on predefined inclusion and ex-
clusion criteria, methodological rigor, and innovation. Neural networks dominated the
reviewed approaches, with ensemble learning as a secondary method, and supervised
learning prevailing across tasks. Emerging trends include hyperspectral imaging, sensor
fusion, explainable Al, and blockchain-enabled traceability. Limitations in current research
include domain coverage biases, data scarcity, and underexplored unsupervised and hybrid
methods. Real-world implementation challenges involve integration with legacy systems,
regulatory compliance, scalability, and cost-benefit trade-offs. The novelty of this review
lies in combining a transparent PRISMA approach, a six-domain thematic framework, and
Industry 4.0/5.0 integration, providing cross-domain insights and a roadmap for robust,
transparent, and adaptive QC systems in the food industry.

Keywords: machine learning; food quality control; defect detection; smart packaging;
explainable Al ingredient optimization; predictive analytics; food traceability; Industry 4.0;
sensor-based inspection

1. Introduction

QC is a cornerstone of the global food industry, ensuring safety, regulatory compli-
ance, and consumer trust in increasingly complex and competitive markets. Effective QC
systems mitigate risks associated with contamination, adulteration, fraud, and process
variability—hazards that can cause widespread foodborne illness, economic loss, and
reputational damage if left unchecked [1]. Traditional QC approaches, such as manual
inspection, laboratory testing, and batch sampling, have been indispensable for decades
but are often reactive, labor-intensive, and limited in scalability, responsiveness, and
precision, particularly within the context of globalized supply chains and evolving
consumer demands [1,2].
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Internationally recognized standards—such as Hazard Analysis and Critical Control
Points (HACCP), Good Manufacturing Practices (GMP), ISO 9001, and ISO 22000—form
the backbone of regulatory QC frameworks administered by bodies including the U.S. Food
and Drug Administration (FDA), European Food Safety Authority (EFSA), and the Codex
Alimentarius Commission [2]. These frameworks emphasize preventive control, risk-based
evaluation, and traceability, requiring systematic monitoring from raw materials through
processing, packaging, and distribution. Nevertheless, challenges persist in harmonizing
requirements across jurisdictions, combating increasingly sophisticated food fraud, and
ensuring transparency throughout extended supply chains [3].

Recent advances in sensing technologies (e.g., hyperspectral imaging, biosensors,
Internet-of-Things networks) and the proliferation of high-volume, high-velocity pro-
duction and environmental data have created fertile ground for a paradigm shift in QC
methodology. Within this context, ML—a branch of artificial intelligence (Al)—has emerged
as a transformative enabler of real-time, predictive, and adaptive QC [4]. Unlike static,
rule-based systems, ML algorithms can learn from historical and streaming data to iden-
tify complex, nonlinear patterns, optimize operational parameters, and forecast quality
outcomes before defects occur [4,5].

Applications of ML in food QC span a wide spectrum: (1) real-time, non-destructive
quality assessment to complement or replace destructive laboratory methods [5]; (2) high-
throughput visual inspection using computer vision to detect surface defects and classify
products by grade or specification [5]; (3) predictive and preventive modeling for shelf-life
estimation, microbial growth prediction, and process deviation alerts [4]; (4) multi-modal
data integration, combining imaging, spectral, chemical, and sensor data for comprehensive
quality profiling [4].

Algorithmic approaches include traditional supervised classifiers (e.g., support vector
machines (SVMs), decision trees, k-nearest neighbors (KNN), unsupervised and semi-
supervised anomaly detectors, ensemble learning methods) and, increasingly, deep learning
(DL) architectures such as convolutional neural networks (CNNs) and generative adversar-
ial networks (GANSs), which excel in high-dimensional image and sensor data fusion [4,5].
These technologies are increasingly being embedded within the broader framework of
Industry 4.0, integrating ML with IoT, blockchain, and digital twin technologies to enable
interconnected, self-optimizing, and transparent food production systems [6].

The present review systematically analyses the role of ML in enhancing QC processes
across the food industry. Drawing upon recent literature, it categorizes applications by
domain, synthesizes methodological trends, and evaluates opportunities and challenges in
moving from laboratory prototypes to industrial implementation. In doing so, it aims to
provide researchers, practitioners, and policymakers with a clear understanding of how
ML can advance safe, sustainable, and future-ready food quality management.

This review differs from prior work by applying a PRISMA-based systematic selection
process, introducing a six-domain thematic classification for ML applications in food
QC, and emphasizing metric alignment for cross-study comparability. It also integrates
emerging Industry 4.0/5.0 concepts into the QC framework, offering a broader and more
interconnected perspective than existing reviews.

2. ML—Methods in the Service of Food QC
2.1. Scope and Relevance

In food QC, the central question is not what ML is, but which ML approach most effec-
tively addresses a QC problem under industrial constraints such as speed, non-destructive
testing, traceability, and regulatory compliance [1]. Accordingly, this section introduces
only those methods that were identified in our review and applies them directly to QC tasks
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and data modalities, including imaging, spectroscopy, inline sensing, environmental moni-
toring, and supply chain signals. The description is therefore framed within the six-domain
taxonomy established in Section 3 and aligned with the PRISMA selection process [2].

2.2. Vision-Based Methods for Defect Detection and Grading

CNNs are the prevailing models for visual QC because they automatically extract
relevant features from RGB or hyperspectral images [7,8]. They are particularly effective in
the (i) detection of defects such as cracks, bruises, or contamination in eggs, gummies, and
printed confectionery [5]; (ii) grading and sorting of fresh produce [9]; and (iii) inspection
of packaging integrity [10]. Real-time detection is commonly achieved with single-shot
detectors (e.g., YOLO architectures) [11], while encoder—decoder networks are employed
for segmentation tasks [12].

When annotated defect data are scarce, anomaly detection models such as autoen-
coders or student-teacher networks are applied [13]. Evaluation metrics include precision,
recall, F1-score, and mean intersection-over-union (mloU) for segmentation, which quantify
trade-offs between false rejections and missed detections [14].

2.3. Spectroscopic and Chemometric Approaches for Composition and Authenticity

Near-infrared (NIR) and hyperspectral imaging (HSI) systems generate high-dimensional
spectral datasets [15]. For predictive modeling of compositional traits (e.g., moisture, sugar
content, firmness) or authenticity classification, partial least squares regression (PLSR),
random forests, gradient boosting machines, and artificial neural networks (ANNSs) are
widely applied [16,17]. Feature reduction techniques such as principal component analysis
(PCA) or genetic algorithms mitigate collinearity [18], while explainable Al tools (e.g.,
SHAP values) highlight critical wavelengths or metabolites [19].

Model performance is reported using coefficient of determination (R?), root mean
square error of prediction (RMSEP), and residual predictive deviation (RPD) [20]. In HSI
applications, pixel-level prediction maps provide spatial QC information [21].

2.4. Sensor-Based and Time-Series Models for Process Monitoring

Inline and environmental signals such as temperature, humidity, vibration, and gas
concentrations support predictive QC and process optimization [22]. Tree ensembles,
random forests, XGBoost, and neural networks capture nonlinear relationships [23]. Fea-
ture engineering improves robustness under small-data conditions [22] and facilitates
deployment on embedded systems [24].

Performance metrics include accuracy for fault classification and RMSE, mean absolute
error (MAE), and mean absolute percentage error (MAPE) for continuous outcomes [25].
Explainability methods identify controllable process variables for interventions [26].

2.5. Packaging and Consumer-Facing Verification

CNN- and YOLO-based frameworks are also widely adopted for packaging QC,
including the detection of seal failures and labeling errors [5]. Surrogate models such as
support vector regression (SVR) and ANNSs predict gas exchange or shelf-life indicators
(e.g., CO,, ethylene) from measurable correlates [27].

At the consumer interface, mobile recognition systems integrate edge detectors with
server-based verification to provide instant allergen or recall information [24]. Key metrics
include Fl-score, latency per item, and throughput [14].

2.6. Formulation Optimization and Nutritional Evaluation

Formulation optimization problems—such as balancing fatty acid profiles, designing
growth media for cultivated meat, or maximizing single-cell protein yields—are often solved
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with ANN regressors combined with metaheuristic search algorithms like genetic algorithms,
particle swarm optimization, and NSGA-II [28,29]. Results are reported using R? and RMSE,
with Pareto fronts showing trade-offs among nutrition, cost, and sustainability [30].

2.7. Evaluation Metrics and Reporting Conventions

Evaluation metrics should be aligned to task type: classification with accuracy, preci-
sion, recall, F1, and ROC-AUC; segmentation with mloU; regression with R2, RMSE, RMSEP,
and RPD; and forecasting with RMSE, MAE, and MAPE [20]. For industrial deployment,
false-reject/false-accept rates, alarm frequency, and throughput are also required [23].
Performance values should be reported in SI units to facilitate comparability [21].

2.8. Practical Considerations for Industrial Implementation

Successful deployment requires sensor and lighting standardization [8], calibration
and verification protocols [15], human-in-the-loop review for ambiguous cases [7], and
integration with manufacturing execution and traceability systems [2]. Model risk man-
agement, including drift detection and interpretability, is essential to meet HACCP and
ISO frameworks [1].

3. Review for QC of Food Industry and ML

Having established this methodological foundation, Section 3 turns from algorithms
to applications across product domains. Here, we critically examine how ML techniques
are embedded in real-world case studies—including produce, meat, dairy, beverages,
packaging, and supply chains—highlighting both the successes and the limitations of
their deployment. This transition underscores the central message of the review; ML
is not merely a set of abstract tools, but a transformative driver of food quality control,
whose practical value depends on careful integration with domain knowledge, real-world
constraints, and safety considerations.

3.1. Methodology—Literature Search and Selection

A structured literature search was conducted in the Scopus database to identify peer-
reviewed publications on machine learning applications in food quality control. The search
covered the period from January 2005 to March 2025 and used thematic Boolean keyword
combinations such as (“machine learning” OR “artificial intelligence”) AND (“food quality
control” OR “quality assurance” OR “defect detection” OR “visual inspection” OR “ingre-
dient optimization” OR “predictive analytics” OR “smart packaging” OR “supply chain
transparency”). The initial search retrieved 124 records. These were exported from Zotero
7.0.16 (Corporation for Digital Scholarship, Virginia Beach, VA, USA) in RIS format for
screening and deduplication. After the removal of duplicates (n = 0) and screening of titles
and abstracts for relevance, 68 articles remained. Full-text assessment was then performed
using the following inclusion criteria: (i) peer-reviewed journal article, (ii) direct application
of ML/AI to food quality control, (iii) clear description of methodology and evaluation
metrics, and (iv) publication in English. Exclusion criteria were (i) not peer-reviewed (n = 5),
(ii) no direct ML application to food QC (n = 21), (iii) insufficient methodological detail
(n =12), and (iv) non-English (n = 5). This process resulted in 25 studies meeting all criteria
for inclusion in the review. Screening and selection were performed independently by
two reviewers, with disagreements resolved by consensus. The literature selection process
followed PRISMA 2020 guidelines, and Figure 1 presents the PRISMA flow diagram sum-
marizing the number of records identified, screened, assessed for eligibility, and included,
along with reasons for exclusion at each stage [31].
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Figure 1. PRISMA 2020 flow diagram of study selection for the systematic review on ML in food
quality control.

3.2. Studies Categorization

Recent advances in ML have enabled a wide range of applications across the food
industry, spanning from raw material assessment to end-product inspection, packaging
evaluation, and supply chain monitoring. The 25 reviewed studies illustrate the breadth
of these applications, which can be grouped by product domain, data modality, and ML
methodology (Table 1).

From a product domain perspective (Figure 2), the largest share of studies (36%)
focused on fresh produce, including hyperspectral imaging for sweet potato quality as-
sessment [19], non-targeted metabolomics for plant-derived materials [32], and predictive
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modeling of post-harvest gas emissions [33]. Meat and seafood applications (12%) ad-
dressed nutritional enhancement [34], cultivated meat culture media optimization [35], and
Al-driven drying time prediction [36]. Processed foods (12%) included defect detection
in rawhide sticks [37], appearance analysis of 3D-printed chocolate [38], and valorization
of food waste into single-cell protein [39]. Packaging QC (12%) featured non-destructive
defect detection in reusable containers [14], Al-assisted green packaging design [40], and
mobile platforms for consumer-level safety checks [24]. Smaller shares were observed
for dairy (8%) [41,42] and beverages (4%) [43], while supply chain/mixed studies (16%)
explored vibration-based monitoring [22], traceability systems [44], classification of waste
interventions [45], and Industry 4.0 frameworks [46].

1 (4.0%
2 (8.0%)

Product Domain
Beverages (e.g., wine, juice)
Dairy
Fresh Produce (fruits & vegetables)
Meat and Seafood
Packaging Quality Monitoring
Processed Foods & Confectionery
Supply Chain / Mixed-Category Traceability

3 (12.0%)

9 (36.0%)

3 (12.0%)

3 (12.0%)

Figure 2. Distribution of reviewed studies by product domain.

In terms of data modality (Figure 3), over half of the studies (52%) relied on imaging—
from hyperspectral and RGB image analysis [14,19,24,37,38,47,48] to advanced segmenta-
tion models [49]. Spectroscopy/chemical data (16%) supported compositional analysis
in wine, olive oil, meat, and fish [34,35,42,43]. Sensor-based approaches (20%) included
vibration signal characterization [22], gas emission monitoring [33], and process parameter
tracking [50,51]. A smaller subset (12%) integrated multi-modal data, combining imaging,
spectral, and sensor inputs for more robust predictions [32,36,44].

Regarding ML methodology (Figure 4), supervised learning dominated (84%), with
models such as convolutional neural networks, random forests, and gradient boosting
applied to classification, regression, and prediction tasks [19,22,24,32-36,38-43,45-48,51,52].
Unsupervised learning (8%) was used for anomaly detection and clustering in defect iden-
tification [14,37], while hybrid approaches (8%) combined supervised and unsupervised
techniques, as in open-world ingredient segmentation [49] and energy optimization under
Industry 5.0 [50].

Collectively, these studies demonstrate that ML is no longer confined to niche applica-
tions in food QC. Instead, it is becoming a core enabler of scalable, precise, and responsive
quality management—addressing the limitations of traditional, reactive QC methods and
meeting the demands of globalized supply chains and evolving consumer expectations.
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Figure 4. ML methodology distribution by product domain.
In addition to the 25 systematically reviewed studies presented in Table 1, it is worth

highlighting emerging applications of machine learning in green extraction technologies.
For example, Mantiniotou et al. [53] applied ensemble ML models—including Random
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Forest, Gradient Boosting, and AdaBoost—to optimize the pressurized liquid extraction
(PLE) of rosemary for antioxidant recovery. Their approach combined experimental mod-
eling with synthetic data augmentation to enhance prediction accuracy and process effi-
ciency. This study exemplifies how Al-assisted extraction workflows can reduce reliance
on labor-intensive experimentation and support the sustainable development of bioactive
compounds for food and nutraceutical applications.

Table 1. Classification of the 25 reviewed studies by food type, data nature, and applied ML algorithms.

Category Axis Sub-Category Count % of Total Representative Studies
Fresh produce 9 36 [19,32,33,44]
Dairy 2 8 [41,42]
Meat and seafood 3 12 [34-36]
Product Domain Beverages 1 4 [43]
Processed foods 3 12 [37-39]
Packaging QC 3 12 [14,24,40]
Supply chain/mixed 4 16 [22,45,46]
Imaging 13 52 [14,19,24,37,38,47-49]
. Spectroscopy/chemical 4 16 [34,35,42,43]
Data Modality Sensors 5 20 [22,33,41,50,51]
Multi-modal 3 12 [32,36,44]
Supervised 21 84 [19,22,24,32-36,38-43,45-48,51,52]
ML Methodology Unsupervised 2 8 [14,37]
Hybrid 2 8 [49,50]

3.3. Food Quality Applications

This section documents the use of ML in compositional analysis, grading, and authen-
ticity assessment across various food product categories. Here, studies detail how feature
extraction from spectral, imaging, and sensor data, in concert with advanced classifiers, is
enabling more precise and granular food quality characterization.

Ahmed et al. [19] presented a non-destructive quality assessment approach for sweet
potatoes using Visible and Near-Infrared Hyperspectral Imaging (VNIR-HSI) combined
with Explainable Artificial Intelligence (XAI). The study targeted three key attributes: dry
matter content (DMC), soluble solid content (SSC), and firmness, using samples from three
varieties. Spectral data (400-1000 nm) were pre-processed, and key wavelengths were
selected via Genetic Algorithm (GA) and Competitive Adaptive Reweighted Sampling
(CARS). Predictive modeling employed supervised PLSR, with interpretability achieved
through SHapley Additive exPlanations (SHAP). The method achieved high accuracy for
DMC, good performance for firmness, and moderate performance for SSC. Prediction maps
enabled pixel-level visualization of quality attributes, supporting efficient grading in the
food industry. In the same application, Ahmed et al. [19] demonstrated that coupling hyper-
spectral imaging with XAl could achieve over 95% classification accuracy for anthocyanin
content in sweet potatoes, while generating feature-importance maps aligned with known
pigment absorption bands. This highlights the potential of integrating spectral data with
XAI to meet both performance and transparency requirements in fresh-produce QC.

Pan et al. [32] developed a two-stage analytical framework combining non-targeted
metabolomics with explainable Al for QC of Ginger-Eucommiae Cortex (G-EC). In Stage 1,
non-targeted ultra-performance liquid chromatography-high-resolution mass spectrometry
(UPLC-HRMS) with multivariate statistical analysis identified 517 significantly altered
metabolites between raw and optimally processed G-EC, with coniferyl aldehyde (CFA)
emerging as a key quality marker. In Stage 2, a supervised Extreme Gradient Boosting
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(XGBoost) regressor was trained on color features, extracted via watershed-based image
segmentation to predict CFA content. SHAP analysis ranked the most influential color
variables, revealing that a* L, and E values had the highest impact on CFA prediction.
The model achieved high predictive performance with no evidence of overfitting, demon-
strating the feasibility of rapid, non-destructive CFA quantification for food and medicinal
product QC.

Ding et al. [37] developed a data augmentation framework to address limited training
samples in defect detection for rawhide stick products, a pet food item with irregular
shapes. The proposed model integrates a Residual Block (ResB) and Hybrid Attention
Mechanism (HAM) into a Deep Convolutional Generative Adversarial Network (DCGAN)
architecture, termed ResB-HAM-DCGAN, and employs a Wasserstein loss with gradient
penalty to stabilize training and improve image fidelity. The augmented dataset was
used to train DL models for defect classification, with defects including surface stains and
irregular shapes. The model generated high-quality synthetic images from an original
dataset of 1800 grayscale images. Performance was evaluated against standard DCGAN
and Wasserstein GAN with Gradient Penalty (WGAN-GP) using Inception Score (IS),
Fréchet Inception Distance (FID), and Structural Similarity Index Measure (SSIM). ResB-
HAM-DCGAN outperformed baselines. When used to augment the dataset for training a
LeNet-5 CNN, the approach improved classification accuracy and reduced loss compared
to other augmentation methods.

Jauhar et al. [41] proposed a smart sensing system for real-time monitoring of milk
spoilage using Internet of Things (IoT) sensors and ML. The system integrates temperature,
pH, and gas concentration sensors to collect spoilage-related data, which is transmitted
wirelessly to a processing unit. Data preprocessing included noise filtering and normal-
ization, followed by supervised model training for spoilage classification. The authors
evaluated multiple algorithms, including RE, SVM, and KNN, to identify the optimal
model. The RF model achieved the highest accuracy and lowest error rate, outperforming
SVM and KNN. The system demonstrated potential for continuous, non-invasive quality
monitoring in the dairy supply chain, enabling early spoilage detection and reducing waste.
In the same work, Jauhar et al. [41] employed explainable Al to enhance the resilience of
perishable-product supply chains by leveraging customer-profile data, enabling targeted
interventions to reduce spoilage and optimize distribution routes.

Kurtanjek [42] applied causal AI modeling to integrate physicochemical data and
consumer sensory assessments for food quality analysis. The study used three datasets:
wheat baking quality, 45 physicochemical variables from 7 cultivars over 3 years; fermented
dairy product quality, 1059 samples with pH, temperature, taste, odor, fat, turbidity, and
color; and wine quality, with 1599 red and 4898 white samples, with 12 composition
variables. For feature selection, the wheat dataset was regularized using a Least Absolute
Shrinkage and Selection Operator (LASSO) elastic net, reducing it to 10 key variables. A
supervised RF regression model achieved 75% variance explanation in cross-validation.
Structural Causal Models (SCM) were constructed using Bayesian networks (BN) with
Monte Carlo Markov Chain (MCMC) sampling to infer directed acyclic graphs (DAG) and
average causal effects (ACE), validated by Double Machine Learning (DML). In the dairy
dataset, a supervised RF classifier achieved <1% out-of-bag classification error. Causal
analysis identified temperature and fat content as primary direct causes. In the wine dataset,
RF regression models achieved prediction errors of 5.13% for red and 4.17% for white wine.
Alcohol content showed the highest positive ACE = 0.35 quality/alcohol unit, while volatile
acidity had the highest negative ACE = —0.2 quality/acidity unit.

A detailed summary of the reviewed works, including data size, modeling methods,
and evaluation metrics, is presented in Table 2.
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Table 2. Summary of studies in Food Quality Applications category.
Cite Data Size Observed Features AI Method Evaluation Results
DMC:
R? =092
RMSEP = 1.50
RPD = 3.58
141 2 SSC:
samples VNIR-HSI spectra Supervised R?, R = 0.66
[19] from 3 sweet 400-1000 nm, DMC, RMSEP, )
- . PLSR regressor RMSEP = 0.85
potato varieties SSC and firmness RPD RPD = 1.72
Firmness:
R?=0.85,
RMSEP = 1.66
RPD = 2.63
Metabolite profiles
from Liquid
) f2]§ batche§ hig;:?gég’cglri)iigt};‘y Supervised R2 R2 = 0.83
[32] for t:;:;nr;mﬁ f; (LC-MS); color XGBoost regressor o
P features from digital
images, red, green,
blue, L*, a*, b*, L, AE
Unsupervised
1800 grayscale Rawhide stick defect DCGAN IS, IS=6.12,
[37] images images, surface stains, ger;e;rstor FID, FID = 105.61
512 x 512 px irregular shapes Supervised CNN SSIM SSIM = 0.72
classifier
Not specified
(IoT sensor data .
[41] from milk Temp eratL}re, pH, 8as Superv1§ ?d RE Accuracy Accuracy = 0.98
. . concentration readings classifier
spoilage monitor-
ing)
Wheat:
R?=0.75
Protein ACE = 0.65
Wheat: Total high
hysicochemical and molecular-mass
Wheat: 63 samples, bP ysteo . Supervised RF (THMM) ACE = 0.42
Dairy: 1059 10chem1f:al properties regressor and R? Dairy:
y Dairy: pH, & . 4 Y
[42] samples, temperature, taste classifier MSE, MSE < 1.00%
Wine: 6497 odor fa’t ’ and PE Temperature
samples—1599 red turbidi t/y C(;IOI‘ Supervised BN-SCM ACE ACE = —0.04
and 4898 white Wine: physi ’ hemical regressor Fat ACE =0.40
ine: physicochemica Wine:
composition PE = 5.13% (red)
PE =4.14%
(white)

Alcohol ACE =0.35

RMSEP is in % for DMC of the sample’s mass, RMSEP for SSC is in degrees °Bx, which is the sugar content in
an aqueous solution, RMSEP for firmness is in Newtons (N), representing the force required to deform the sample.
L*, a*, b*: CIELAB color coordinates (L* = lightness, a* = green-red axis, b* = blue-yellow axis). Note: The reported
metrics are task-specific and should not be interpreted as directly comparable across studies.

Overview of Food Quality Applications

Figure 5A presents the distribution of AI/ML techniques employed across the re-
viewed publications. Ensemble learning and NN-based approaches are the most frequently
adopted, appearing in three and two studies, respectively, highlighting their strong ability
to capture complex feature interactions. By contrast, Bayesian methods and regression-
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Figure 5. (A) Distribution of AI/ML techniques in Food Quality Applications category. (B) Types of
learning approaches used in Food Quality Applications category. (C) Prediction task in Food Quality

Applications category.

Figure 5B shows that supervised learning overwhelmingly dominates, accounting for
86% of the studies. Unsupervised methods are rarely used, with only a single instance
(14%), suggesting that while exploratory approaches have potential, most applications still

rely on labeled data for predictive accuracy.

Finally, Figure 5C illustrates the categorization of tasks. Regression and classification
each appear in three studies, reflecting their central role in predictive modeling tasks. In
contrast, generative modeling is seldom applied, with only one instance, indicating limited
exploration of data synthesis or augmentation approaches.

Overall, these findings point to a methodological preference for supervised paradigms
combined with ensemble and NN techniques, primarily applied to regression and classifica-
tion problems. This trend emphasizes the community’s focus on leveraging well-established
predictive models, while exploratory methods such as unsupervised and generative learn-

ing remain underutilized.
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3.4. Defect Detection and Visual Inspection Systems

The second thematic cluster delves into ML-powered defect and contamination iden-
tification. Emphasis is placed on computer vision-based inspection systems—especially
CNN-driven models for detecting bruises, discolorations, extraneous matter, and subtle
packaging flaws—in fruits, vegetables, meats, grains, and packaged foods.

Huang et al. [38] investigated the application of Al-based image recognition for
QC in three-dimensional (3D) printed chocolate incorporating different oleogels, namely
monoglycerides (MAG), sucrose fatty acid ester (SE), and hydroxypropyl methylcellulose
(HPMC). The study examined the effects of these oleogels on the thermal and textural
properties of white and dark chocolate, as well as their ability to maintain printed structural
integrity. Initially, an Al-driven image recognition model, implemented as a supervised
ANN, was trained on images of chocolates with varying shapes and formulations. The
system extracted geometric and contour-based features to identify deviations from the in-
tended designs, achieving recognition rates exceeding 90% for circular shapes and between
70% and 85% for square or triangular forms. Subsequently, the trained ANN was deployed
for defect detection in a simulated production line environment, where chocolates were
moved to emulate a conveyor belt inspection process. This stage achieved high accuracy
(>90%) in detecting major structural defects such as incomplete extrusion of more than
three layers, although performance declined to below 50% for subtle imperfections. The
findings demonstrate the potential of Al-based image recognition as a non-invasive tool for
real-time quality monitoring in additive manufacturing of confectionery products, while
also highlighting the need for enhanced detection capabilities for minor defects.

Truong and Luong [14] proposed a non-destructive anomaly detection framework
for reusable food packaging using a student-teacher autoencoder architecture with vision
transformers. The dataset comprised 245 high-resolution RGB images from four cup cate-
gories. Initially, a background removal algorithm isolated the cup region. The anomaly
detection model employed Data-Efficient Image Transformer (DeiT) backbones for both
student and teacher networks, with the teacher pretrained on ImageNet and the student
trained solely on defect-free images to replicate the teacher’s feature outputs. Defec-
tive samples were identified through feature discrepancies between the two networks,
using cosine-distance-based hard-feature loss to focus training on challenging areas. Per-
formance was enhanced through data augmentation like rotation, brightness-contrast
adjustments, as well as corruption models like stained-shape and latent noise, and knowl-
edge transfer from other cup types using diffusion-based synthetic defect generation. The
best configuration diffusion-based transfer, combined with brightness-contrast adjustment
and rotation, achieved an image-level F1-score of 0.969, with pixel-level Fl-scores of 0.508.
The method proved effective even with minimal training data and showed potential for
extension to defect detection in other mass-produced food-related products. In the same
work, Truong and Luong [14] developed a comparable non-destructive, autoencoder-
based defect-detection system for reusable food packaging, achieving high sensitivity
in identifying contamination and structural flaws, thereby reinforcing circular-economy
objectives in packaging systems.

Aiello and Tosi [43] evaluated three supervised ML classifiers—REF, Linear Discrimi-
nant Analysis (LDA), and KNN for predicting wine quality, vineyard origin, and olive oil ge-
ographical origin from chemical composition data. Three datasets were used: (1) a dataset
containing 6800 Portuguese red and white wine samples with 11 physicochemical variables
and quality scores; (2) a dataset of 178 Italian wine samples from 3 vineyards with 13 chem-
ical characteristics; and (3) a dataset of 572 olive oil samples from 9 Italian regions with
seven fatty acid measurements. Data were preprocessed with the Synthetic Minority Over-
sampling Technique (SMOTE) to address class imbalance. Across all tasks, RF achieved



Foods 2025, 14, 3424

13 of 35

the best performance. For wine quality prediction, RF attained accuracies of 0.63 for white
and 0.65 red with average ROC-AUC of 0.86 and 0.77. For vineyard origin classification,
RF achieved perfect accuracy and ROC-AUC of 1.00. For olive oil origin classification,
RF reached 0.96 accuracy and 1.00 ROC-AUC. Feature importance analysis identified free
sulfur dioxide, chlorides, and alcohol as top predictors for white wine; alcohol, volatile
acidity, and sulfates for red wine; flavonoids, color intensity, and proline for vineyard origin;
and linolenic, linoleic, and eicosenoic acids for olive oil origin. In the same work, Aiello
and Tosi [43] developed an Al-driven tool for predicting “unhealthy” wine and olive oil
batches using chemical profiling and supervised learning, demonstrating the applicability
of such models to beverage-quality control for early detection of off-spec products.

Cengel et al. [47] developed a DL-based system for the automatic detection of egg sur-
face damage to improve QC in the food industry. The dataset contained 794 color images,
632 damaged and 162 intact, captured under diverse real-world conditions and was split
into 80% training and 20% testing sets. Four supervised CNN classifiers—GoogLeNet, Vi-
sual Geometry Group (VGG)-19, MobileNet-v2, and Residual Network (ResNet)-50—were
trained and compared. Among the models, GoogLeNet achieved the highest classification
performance with an accuracy of 98.73%, precision of 98.41%, recall of 100%, and F1-score
of 99.2%, although it had the longest training time, 556 s. MobileNet-v2 trained fastest in
443 s, but achieved slightly lower precision. VGG-19 had perfect precision 100% but slightly
lower recall than GoogLeNet, while ResNet-50 recorded the lowest accuracy 96.84%. The
study demonstrated that deep CNN architectures can provide highly accurate, efficient,
and non-invasive solutions for real-time egg damage detection, reducing product losses
and improving safety in food supply chains.

Chen et al. [48] developed an intelligent defect detection system for gummy candies
operating within an edge computing and Al of Things (AloT) framework. The system
aimed to replace manual visual inspection, reducing labor requirements and improving
production efficiency. The dataset consisted of 5000 manually captured images of defective
gummy candies across four defect categories, hole, leakage, abnormal color, and connec-
tion augmented to 20,000 images through flipping, saturation adjustment, and contrast
modification. Initially, images were acquired in real time using a charge-coupled device
(CCD) camera integrated into a conveyor-belt inspection setup. The captured images were
processed by a YOLOvV3 (You Only Look Once) CNN for object detection. The model
architecture used Darknet-53 as a backbone with multi-scale feature fusion to detect large,
medium, and small defects in a single forward pass. Logistic regression classifiers with
binary cross-entropy loss were employed for multi-label defect prediction. The trained
system achieved a precision of 93%, recall of 87%, and F1-score of 90%, with an average
detection speed of 3.2 items per second. The results demonstrated the feasibility of integrat-
ing YOLO-based defect detection into edge computing architectures for real-time QC in the
confectionery industry, though limitations remained in detecting certain three-dimensional
surface defects.

A detailed summary of the reviewed works, including data size, modeling methods,
and evaluation metrics, is presented in Table 3.
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Table 3. Summary of studies in Defect Detection and Visual Inspection Systems category.

Cite Data Size Observed Features AI Method Evaluation Results
Number of chocolate
samples not specified, Shape recognition:
multiple shapes (e.g., Shape geometry, Circular shapes ~ 90%,
circular, square, contour features, . Square/triangular
. : Supervised N o
[38] triangular) and oleogel extrusion ANN dlassifier Accuracy shapes = ~70-85%
formulations (e.g., completeness, Defect detection: Major
monoglycerides, height uniformity defects > 90%, Subtle
sucrose fatty acid ester, defects < 50%
HPMC at 1-3%)
. . Image-level:
ng}il;rrlesoluﬁorrln RGB U iced ROC-AUC = 0.96,
2ges O Color, texture, and opervise ROC-AUC, Fl-score = 0.97
[14] four reusable ANN autoen- .
" shape patterns e Fl-score Pixel-level:
cup categories: coder classifier ROC_AUC = 0.92
245 samples Fl-score = 0.51
Wine quality:
Wine quality: Accuracy =_0.63 f(;r Whge,
6800 Portuguese wine Accuracy =0.65 for red,
11 physicochemical ROC-AUC =0.86
samples—1900 red iabl ith quali for whi
and 4900 white variables with quality or white,
[43] Wine oriein: ! score, Supervised Accuracy, ROC-AUC = 0.77 for red
S 13 chemical RF regressor ROC-AUC Wine origin:
178 Italian . .
wine samples characteristics, Accuracy = 1.00,
. e 7 fatty acid variables ROC-AUC =1.00
Olive oil origin: ) o
572 samples Olive oil origin:
Accuracy = 0.96,
ROC-AUC =1.00
Egg surface color and Accuracy, Accuracy = 0.98,
Egg images: 794, texture patterns from Supervised Precision, Precision = 0.98,
[47] 632 damaged and RGB images under CNIEI) classifier Recall, Recall = 1.00,
162 intact varied backgrounds, Fl-score, Fl-score = 0.99,
960 x 1280 px ROC-AUC ROC-AUC =0.94
Gummy candy images: Color, shape, and Supervised Precision, Precision = 0.93,
[48] 20,000 augmented texture features from CNI\I:I) classifier Recall, Recall = 0.87,
from 5000 originals RGB images F1-score F1-score = 0.90

Note: The reported metrics are task-specific and should not be interpreted as directly comparable across studies.

Overview of Defect Detection and Visual Inspection Systems

Figure 6A presents the distribution of AI/ML techniques applied within Defect Detec-
tion and Visual Inspection Systems. NN-based approaches are clearly dominant, featured
in four studies, underscoring their robustness in handling image-based pattern recogni-
tion and classification tasks. Ensemble learning, by contrast, appears in only one study,
suggesting that its application remains relatively limited in this context.

Regarding learning paradigms, Figure 6B reveals a strong prevalence of supervised
learning methods, accounting for 80% of the reviewed studies. Only a single instance (20%)
employed unsupervised learning, indicating that most research continues to rely on labeled
datasets and explicitly defined targets for training models.

Figure 6C illustrates a slight preference for classification over regression. Classification
tasks—used to determine categorical outputs such as defect type—appear in three studies,
while regression, applied to estimate continuous variables like defect severity, is employed
in two studies. This near parity reflects the dual needs of both categorical defect identifica-
tion and quantification of defect-related metrics.
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Figure 6. (A) Distribution of AI/ML techniques in Defect Detection and Visual Inspection Systems
category. (B) Types of learning approaches used in Defect Detection and Visual Inspection Systems
category. (C) Prediction task in Defect Detection and Visual Inspection Systems category.

Opverall, the data point to a methodological inclination toward supervised NN-based
models, with both classification and regression playing complementary roles in the formu-
lation of defect detection tasks.

3.5. Ingredient Optimization and Nutritional Assessment

This section focuses on ML-driven ingredient formulation, predictive modeling
for nutritional composition, and dynamic optimization of additive or substitution sce-
narios. ML-based platforms for virtual formulation, such as Bayesian optimization
and ensemble regressors, are evaluated alongside their impact on sustainability and
product performance.

Sadhu et al. [34] developed a hybrid Al approach to optimize the frying conditions
of Catla in mustard oil, aiming to maximize nutritional quality while minimizing energy
and resource waste. Fresh filets, 10 kg in total, were fried under systematically varied
temperatures from 140 to 240 °C, for 5-20 min, and oil amounts from 25 to 100 mL/kg per
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fish, yielding 28 experimental runs, each in triplicate. Nutritional quality was assessed
via the polyunsaturated-to-saturated fatty acid ratio (PUFA /SFA) and the index of athero-
genicity (IA). A supervised ANN with a multi-layer perceptron architecture was trained
to model the nonlinear relationship between frying parameters and nutritional indices,
achieving particularly strong predictive performance for IA. This ANN was then coupled
with metaheuristic optimizers—genetic algorithm, particle swarm optimization (PSO),
and multi-objective genetic algorithm (MOGA)—to determine optimal frying conditions.
Single-objective optimization improved PUFA /SFA by up to 63.05% and reduced IA by
up to 99.64% compared to baseline frying, while MOGA achieved simultaneous improve-
ments of 44.76% in PUFA /SFA and 92.94% in IA at 118.92 °C, 6.06 min, and 40 mL oil/kg.
Validation experiments confirmed predictive accuracy, with absolute relative errors under
5% for PUFA /SFA and under 10% for IA. In the same work, Sadhu et al. [34] applied a
comparable Al-driven optimization framework to enhance the nutritional value of fried
fish, demonstrating how such methodologies could be adapted to dairy processing to
optimize nutrient retention and sensory quality under varying thermal treatments.

Nikkhah et al. [35] proposed an Al-based multi-objective optimization framework
to formulate a reduced-serum culture medium for cultivated zebrafish meat, integrating
environmental, economic, and biological performance metrics. The dataset consisted of
93 experimental formulations, each tested in triplicate, designed via Response Surface
Methodology (RSM) using seven independent variables—insulin-like growth factor, fibrob-
last growth factor, transforming growth factor, platelet-derived growth factor, selenium,
ascorbic acid, and fetal bovine serum. Dependent variables were global warming potential
(GWP), ingredient cost, and cell-specific growth rate. Radial Basis Function (RBF) NNs
were employed to model the three dependent variables, achieving high predictive accuracy.
These models served as inputs to a Non-dominated Sorting Genetic Algorithm II (NSGA-II),
which identified optimal formulations that maximized growth rate while minimizing GWP
and cost. Validation experiments confirmed negligible deviation from predicted values.
Compared to average formulations, the optimized medium reduced GWP by up to 65%,
decreased cost by up to 24%, and increased growth rate by up to 51%. This demonstrates
the feasibility of Al-driven serum-reduction strategies for sustainable fish cell culture media
in cultivated meat production.

Sagar et al. [39] investigated the valorization of food waste into single-cell protein
(SCP) using Pichia occidentalis PG5, combining statistical optimization and Al modeling.
The study used salad peel waste and leftover food waste hydrolysates as substrates, as-
sessing multiple process variables through one-factor-at-a-time (OFAT), Plackett-Burman
design, and Central Composite Design (CCD). Four significant parameters—salad peel
waste hydrolysate concentration, malt extract concentration, calcium chloride concentra-
tion, and pH—were identified for optimization. For predictive modeling, a supervised
SVM regressor with a linear kernel was developed in R and compared to the Response
Surface Methodology (RSM) model. The SVM model demonstrated superior predictive
performance with R? = 0.9772 compared to RSM with R? = 0.8881. Under optimal SVM-
predicted conditions like, 50 g/L salad peel waste hydrolysate, 20 g/L malt extract, 20 g/L
CaClp, pH 8.0, experimental SCP yield reached 25.90 g/L, representing a ~16-fold increase
compared to unoptimized conditions.

Chen et al. [49] introduced Ingredient Segment Anything Model (IngredSAM), a one-shot,
open-world food ingredient semantic segmentation framework that requires no model training.
Initially, a multi-level visual feature extraction was performed using four visual foundation
models—DINOv2, Masked Autoencoder (MAE), CLIP, and I-JEPA—to obtain semantically
consistent representations from both a clean ingredient prompt image and an open-world
food image. These features were aggregated and processed using the unsupervised Texture-
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guided Saliency Distilling Network (TSDN) to isolate the ingredient’s foreground in the
prompt image. Afterwards, cosine similarity between prompt and open-world image features
was used to generate positive and negative point prompts, which guided the IngredSAM
to produce the final segmentation mask. The method was evaluated on FoodSeg103 and
UECFoodPix Complete datasets. IngredSAM achieved the highest mloU on both datasets,
outperforming supervised and open-world baselines. On FoodSeg103, it reached an mlIoU of
48.78%, with the top ingredient being bread, with IoUs of 69.17%, and 67.23% for carrot. On
the UECFoodPix Complete dataset, it achieved 70.21% mloU, with the best category of rice
reaching 76.47% IoU. The results demonstrated strong generalization to diverse ingredient
appearances and robustness in complex, unconstrained scenes.

A detailed summary of the reviewed works, including data size, modeling methods,
and evaluation metrics, is presented in Table 4.

Table 4. Summary of studies in Ingredient Optimization and Nutritional Assessment category.

Cite Data Size Observed Features Al Method Evaluation Results
84 experimental runs were szF iénggi"
[34] cog)d;g J}i;;ggfgg;%?gg;ng Temperature, frying Supervised R?, RMSE = 0.038
g L. time, oil amount ANN regressor RMSE 1A
combinations performed R2 =098,
in triplicate RMSE = 0.046
[35] Formulations X triplicate: Concelnntiet}idc:lfthWP Supervised RMSE, RMSE =0.01,
. 93 samples ’ ! ANN regressor MAPE MAPE = 0.90
cost, growth rate
Concentrations of salad Supervised
[39] 30 experimental runs peel waste hydrolysate, SV]\/F eOTESSOT R? R? = 0.9772
malt extract, CaCl,, pH &
FoodSeg103:
Bread = 0.69,
Carrot = 0.67,
Chicken = 0.56,
Ingredient-level color, Unsupervised DNN Sauce = 0.54,
FoodSeg103: 7118 images, texture. and shape ’ classifier Tomato = 0.58
[49] UECFoodPix Complete: P ’ p and mloU UECFoodPix
. eatures from .
10,000 images food images Supervised Complete:
ANN classifier Salad = 0.73,
Beverage = 0.75,
Soup =0.72,
Noodle =0.72,
Rice =0.76

Note: The reported metrics are task-specific and should not be interpreted as directly comparable across studies.

Overview of Ingredient Optimization and Nutritional Assessment

Figure 7A illustrates the distribution of AI/ML methods applied to Ingredient Opti-
mization and Nutritional Assessment tasks. NNs are the predominant technique, appearing
in four studies, reflecting their high adaptability and effectiveness in modeling complex,
nonlinear relationships in nutritional datasets. SVMs are reported in only one study,
indicating a comparatively limited use in this application area.

As shown in Figure 7B supervised learning dominates the field, comprising 80% of
the studies. This strong preference suggests that ingredient optimization and nutritional
analysis tasks are primarily approached using labeled datasets, where target outputs such
as nutritional values or ingredient combinations are known. Only a single study (20%)
utilized unsupervised learning, pointing to minimal exploration of data-driven discovery
without explicit labels in this domain.
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Figure 7. (A) Distribution of AI/ML techniques in Ingredient Optimization and Nutritional As-
sessment category. (B) Types of learning approaches used in Ingredient Optimization and Nu-
tritional Assessment category. (C) Prediction task in Ingredient Optimization and Nutritional

Assessment category.

Regarding task formulation, Figure 7C reveals a slight leaning toward regression
tasks (three studies), which are typically used to predict continuous nutritional values
or optimize ingredient ratios. Classification tasks, such as categorizing products based
on nutritional quality or dietary constraints, were reported in two studies. This balanced
representation underscores the dual objectives of precise nutrient estimation and categorical
decision-making in nutritional assessment systems.

In summary, supervised NN-based models are the preferred choice for Ingredient Op-
timization and Nutritional Assessment, with regression tasks being slightly more prevalent
than classification, reflecting the continuous nature of nutritional variables often encoun-

tered in such applications.

3.6. Packaging—Sensors and Predictive QC

Here, the review explores ML’s role in predicting packaging failures, optimizing
design, and automating inspection for defects, seal integrity, and label compliance. DL
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and sensor fusion systems are shown to be essential for high-speed, non-destructive, and
reliable packaging QC on production lines.

Rashvand et al. [33] investigated the effect of dielectric barrier discharge (DBD) cold
plasma combined with modified atmosphere packaging (MAP) on the postharvest quality
and shelf life of ‘Shahroudi” apricots stored at 21 °C for 12 days. Physicochemical pa-
rameters included mass loss, pH, soluble solids content, titratable acidity, and skin color.
Mechanical properties included Young’s modulus, tangent modulus, and bioyield stress.
In-package gas composition, Oy, CO,, and ethylene production were monitored. Addi-
tionally, bruise susceptibility was evaluated using pendulum impact tests and scanning
electron microscopy (SEM). Data from mass loss, pH, soluble solids content, titratable
acidity, skin color, and bioyield stress were used as inputs to two ML models—an ANN and
an SVR model—to predict CO; and ethylene production. The optimal ANN architecture
was an MLP with two hidden layers of 17 neurons each for CO, prediction (R? = 0.983,
RMSE = 0.476) and 15 neurons each for ethylene prediction (R? = 0.933, RMSE = 5.376). The
best SVR performance was achieved using a radial basis function (RBF) kernel for CO,
(R? = 0.894, RMSE = 6.077) and ethylene (R? = 0.759, RMSE = 14.117), outperforming poly-
nomial kernels. ANN consistently outperformed SVR in predictive accuracy for both gases.
The study concluded that MAP and DBD treatments, particularly at 10-15 min, improved
the retention of quality attributes and reduced CO, and ethylene production compared to
MAP alone or untreated controls. The proposed ANN model provided robust predictions,
demonstrating the potential for integrating intelligent modeling into postharvest packaging
digitalization strategies.

Dai [40] developed an Al-based methodology for designing green and low-carbon
food packaging, integrating wireless sensor networks (WSN) with ANN to optimize energy
use, minimize pollution, and improve packaging efficiency. The framework utilized an
assurance weight information selection method to classify intelligent energy-saving pack-
aging types, with ANN forming an energy consumption vector from WSN-acquired data.
Packaging design parameters were evaluated for their impact on environmental footprint
across the full life cycle, from material selection to manufacturing, transportation, and
disposal. The proposed AI-WSN model was compared against three baseline approaches:
traditional ML, Cognitive Big Data Analysis (CBDA), and IoT-based methods. Across
metrics, AI-WSN achieved the lowest pollution rate, 70% vs. 90-91% for others; lowest
energy consumption rate, 69% vs. 78-92%; and fastest computation time, 20 units vs. 43-60.
The model also reached a classification accuracy of 97.6% for intelligent packaging type
determination. These results highlight the effectiveness of combining WSN data acquisition
with ANN-based optimization for sustainable packaging design.

Park et al. [24] developed a mobile food safety inquiry platform capable of real-
time packaged food recognition and safety verification using DL. The system integrates a
smartphone-based application with an Al server, enabling users to capture product images
and instantly retrieve safety data, including ingredient lists, nutritional facts, and recall
status. The core model was a fine-tuned YOLOvV7-E6E architecture trained on a custom
dataset of 80,000 images from 100 imported food and beverage types, collected under
varied lighting, angles, and framing conditions to ensure robustness. The YOLOv7-E6E
detector demonstrated high performance, achieving precision = 99.23%; recall = 100%;
F1-score = 99.46%, on the test set (4000 images). Real-world smartphone testing yielded
98% accuracy across 2000 trials, even with challenging capture conditions. Usability tests
with 71 participants confirmed significant efficiency gains over QR code or internet-based
methods, reducing task times by ~70% and improving recall-check completion rates from
68% to 96%.
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Luque et al. [22] presented a fault detection framework for health monitoring of
gripping pliers in beverage bottling plants, a critical agri-food manufacturing process.
Thirteen experiments were conducted under three health states, healthy, spring-damaged,
and bearing-damaged, producing 497 vibration signal segments of 5 s each, recorded via
single-axis accelerometers at 12.8 kHz. Three feature extraction strategies were compared:
raw features with 64,000 values, specialized kurtosis- and RMS-based features with 2 val-
ues, and a 33-variable set of generic time and frequency domain features. A supervised
RF classifier was trained to distinguish health states. Generic features achieved the best
performance, with 100% classification accuracy on the testing set, outperforming special-
ized features (88% accuracy) and raw features (83% accuracy). The generic features also
demonstrated superior robustness to Gaussian noise, requiring fewer training samples
and exhibiting lower computational cost relative to accuracy. The results confirmed that
generic feature-based RF classification is an efficient and scalable method for predictive
maintenance in industrial food processing equipment.

A detailed summary of the reviewed works, including data size, modeling methods,
and evaluation metrics, is presented in Table 5.

Table 5. Summary of studies in Packaging—Sensors and Predictive QC category.

Cite Data Size Observed Features Al Method Evaluation Results
COz:
3 treatment groups Mass loss, pH, SSC, TA R? =098,
roup P, 90h, L Supervised RZ, RMSE = 0.47
[33] x 3 DBD times hue angle, chroma,
. L ANN regressor RMSE Ethylene:
x 5 replicates x 12 days bioyield stress R2 =093
RMSE = 5.37
Packaging material
Not specified; simulated properties, structural Supervised _
(401 and comparative data ~ design variables, energy ANN classifier Accuracy Accuracy =097
usage metrics
Packaging design Precision, Precision = 0.99,
[24] 80,000 images of features under varied Supervised CNN Recall, Recall = 1.00,
100 packaged food types lighting, angles, classifier Fl-score, Fl-score = 0.99,
and framing Accuracy Accuracy = 0.98
Generic features:
I Raw, specialized . Accuracy =1.00
[22] 497 vibration segments kurtosis, Supervised Accuracy Specialized kurtosis:

from 13 experiments

RF classifier Accuracy = 0.8

Raw: Accuracy = 0.83

generic features

Note: The reported metrics are task-specific and should not be interpreted as directly comparable across studies.

Overview of Packaging—Sensors and Predictive QC Category

Figure 8A presents the distribution of AI/ML techniques applied in the packaging,
sensors, and predictive QC category. NNs are the most widely utilized, appearing in
three studies, underscoring their adaptability in capturing complex sensor signals and
packaging-related data patterns. Ensemble learning is less represented, with only one study,
suggesting its use is still at the exploratory stage in this domain.

As shown in Figure 8B, supervised learning accounts for 100% of the reviewed publi-
cations, reflecting the field’s complete reliance on labeled data for predictive modeling. No
unsupervised approaches have yet been reported, indicating that methods for discovering
hidden structures in packaging or sensor data remain unexplored.

Regarding task type, Figure 8C shows that classification dominates, with three studies,
while regression is applied in only one study. This distribution suggests that predictive
QC and packaging-related Al tasks are primarily framed as categorical decisions, such as
defect detection or product classification, rather than continuous prediction.
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Figure 8. (A) Distribution of AI/ML techniques in Packaging—Sensors and Predictive QC cate-
gory. (B) Types of learning approaches used in Packaging—Sensors and Predictive QC category.
(C) Prediction task in Packaging—Sensors and Predictive QC category.

Overall, these results highlight a strong methodological preference for supervised NN—
based approaches in packaging, sensors, and predictive QC applications, with classification
tasks forming the core research focus.

3.7. Supply Chain—Traceability and Transparency

This domain investigates how ML, often integrated with blockchain and IoT, is trans-
forming traceability, provenance verification, and fraud/adulteration detection across
complex supply chains. Case studies highlight frameworks for data-driven transparency,
rapid recall initiation, and regulatory compliance.

Hassoun et al. [44] reviewed the application of fourth-industrial-revolution technolo-
gies, termed Traceability 4.0, in fruit and vegetable supply chains to enhance authenticity,
safety, and quality. The study synthesized evidence from multiple case applications in-
volving Al, the IoT, blockchain, and Big Data (BD), contrasting these with conventional
traceability tools such as chromatographic, spectroscopic, isotopic, and biomolecular meth-
ods. Al implementations included computer vision systems for automated grading of
blueberries and apples, ML-based quality assessment of kiwifruit and carrots, and NN
models for defect detection in dried fruits and vegetables. IoT deployments utilized sensor
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networks, QR and RFID codes for real-time monitoring of environmental parameters like
humidity, temperature, CO,, and product location from farm to consumer. Blockchain trials
integrated loT data to create immutable transaction records, improving transparency, query
efficiency, and stakeholder trust, while BD analytics supported predictive modeling for
supply chain efficiency, waste reduction, and resource optimization. Reported outcomes
included up to 20% yield improvements in field monitoring systems, 98% classification
accuracy in origin authentication of avocados via isotopic and elemental analysis inte-
grated with Al and enhanced fraud prevention through combined blockchain-Al systems.
Despite these gains, large-scale adoption remains constrained by high implementation
costs, limited interoperability standards, and infrastructure and skills gaps. The authors
conclude that integrated Al-IoT-blockchain-BD systems, supported by interdisciplinary
collaboration and standardization, are required for scalable, industrial-grade Traceability
4.0 in the horticultural sector.

Zou et al. [45] developed two supervised NN models to classify food waste inter-
ventions across the global food supply chain using natural language processing (NLP). A
dataset of 2469 interventions was compiled from 154 scholarly articles published between
2013 and 2023, with 478 examples manually classified into six intervention types and seven
stakeholder groups to form the training set. Model 1 performed multi-label classification
of stakeholder groups using a CNN with GloVe embeddings, while Model 2 performed
multi-class classification of intervention types using the Universal Sentence Encoder (USE)
and a fully connected NN. Performance evaluation revealed that Model 1 achieved the
highest scores overall, with an Fl-score of 0.96, outperforming Model 2 with F1-score of
0.90. The results demonstrate that supervised CNN-based text classification is an effective
and scalable method for systematically organizing food waste interventions, enabling faster
meta-analysis and informed decision-making for stakeholders.

A detailed summary of the reviewed works, including data size, modeling methods,
and evaluation metrics, is presented in Table 6.

Table 6. Summary of studies in Supply Chain—Traceability and Transparency category.

Cite Data Size Observed Features AI Method Evaluation Results

[44] Not exphatly Tem-peratur('e, hurmd1tx CO?, Superv1sec:1 PLS-DA Accuracy 0.98
mentioned chemical profiles, isotopic ratios classifier

[45] 2469 food waste Not explicitly mentioned Supervised CNN F1-score 0.96

classifier

Note: The reported metrics are task-specific and should not be interpreted as directly comparable across studies.

Overview of Supply Chain—Traceability and Transparency Category

Figure 9A shows the distribution of AI/ML techniques applied in Supply Chain—
Traceability and Transparency studies. Both regression and NN approaches are represented
equally, with one study each, suggesting that researchers are exploring a mix of traditional
predictive models and more flexible DL approaches.

As illustrated in Figure 9B, supervised learning accounts for 100% of the reviewed
publications in this category. The absence of unsupervised or hybrid methods indicates a
strong reliance on labeled datasets, likely driven by the structured nature of supply chain
and traceability applications.

In terms of task type, Figure 9C highlights that all studies formulate their problems
as classification tasks. This reflects the emphasis on categorical decision-making in sup-
ply chain contexts, such as determining product authenticity, verifying traceability, or
classifying transparency levels, rather than continuous regression-based predictions.
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Figure 9. (A) Distribution of AI/ML techniques in Supply Chain—Traceability and Transparency
category. (B) Types of learning approaches used in Supply Chain—Traceability and Transparency
category. (C) Prediction task in Supply Chain—Traceability and Transparency category.

Overall, these findings reveal a methodological focus on supervised classification
approaches, with both regression models and NNs contributing equally to supply chain
and traceability applications.

3.8. Food Industry Efficiency and Industry 4.0 Models

Finally, the review synthesizes applications of ML within the broader context of
Industry 4.0—including autonomous QC monitoring, hybrid mechanistic-ML modeling,
and the convergence with big data analytics, robotics, and digital twins. Methodological
trends, task typologies, and sensor/ML integration frameworks are mapped across figures
and comparative tables.

Rakholia et al. [36] developed an ML-based system to predict drying times for meat-
based food products in a smart manufacturing environment, with the goal of improving
resource allocation, production planning, and sustainability. The study integrated En-
terprise Resource Planning (ERP) data (product composition, mass, and process details)
with Supervisory Control and Data Acquisition (SCADA) sensor data like temperature,
humidity, fan speed, and heating/cooling status collected at 10 s intervals via an IoT net-
work. After preprocessing steps such as outlier removal, missing value imputation, and
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aggregation, the authors implemented an XGBoost ensemble regressor due to its robustness
with limited datasets and ability to model nonlinear relationships. The model was trained
on data from four high-frequency product IDs (>300 records each) and evaluated via a
sliding window approach (60-day window, 20-day shift), with hyperparameter tuning
by random search. Model performance was evaluated using RMSE, MAE, and MAPE.
Additionally, SHAP-based explainable Al was employed to identify the key drivers influ-
encing model predictions, revealing that environmental parameters had a greater impact
than product composition. The model demonstrated high predictive accuracy and strong
generalizability, achieving an RMSE of 47.14 min, an MAE of 36.27 min, and a MAPE
of 0.56%. In a related study on meat quality assessment, Rakholia et al. [36] applied a
similar Al-driven drying-time prediction framework, integrating process-sensor data with
regression models, and achieved an 18% reduction in prediction error compared to baseline
methods—further underscoring the potential of such systems for resource optimization
and production planning in smart manufacturing.

Konur et al. [46] presented a case study on transforming a traditional small-medium-
sized enterprise (SME) food manufacturer, operating century-old equipment, into an
Industry 4.0-enabled smart factory without replacing existing machinery. The study de-
veloped and deployed a smart production control system integrating big data analytics,
IoT sensors, ML, cyber-physical systems, and cloud computing to improve product consis-
tency, production efficiency, and operational decision-making. Data were collected from
oven temperature profiles, environmental sensors, and operational parameters like cutter
and conveyor speeds, generating over 250,000 data instances in six months. The system
applied supervised ML models. In particular, a KNN classifier developed to predict op-
timal baking conditions, achieved the highest training accuracy (98.8%) and prediction
accuracy (94.7%) compared to Logistic regression, Naive Bayes, MLP, and SVM variants.
The solution reduced production variability, lowered energy costs, and increased capacity,
while providing real-time monitoring, decision support dashboards, and virtualized factory
control. The approach serves as a reference architecture for Industry 4.0 adoption in SMEs
with legacy infrastructure.

Redchuk et al. [50] presented an Industry 5.0 case study in a North American food
ingredient company, demonstrating how a Low-Code Platform (LCP) integrated with an
Industrial Internet of Things (IloT) infrastructure and ML could optimize boiler thermal
efficiency to reduce fuel consumption and carbon emissions. Using 18 months of historical
process and ambient data like boiler pressure, air flow, fuel input, inlet water temperature,
ambient temperature, humidity, and wind speed/direction, the team configured three ML
models via the LCP’s pre-built templates: (1) boiler simulator model to predict fuel usage,
(2) optimal control parameters model to minimize total fuel use while meeting steam de-
mand, and (3) fuel consumption model to identify top drivers. The methodology followed
Lean Startup’s Build-Measure-Learn cycle, involving operators and engineers in model
co-creation to ensure domain relevance. Models were deployed to Microsoft Azure Cloud
for real-time integration with the IoT platform via Application Programming Interface
(API). Testing showed a 2.5% improvement in boiler thermal performance, a 4% reduction
in fuel costs, and an annual reduction of over 10 million pounds of CO, emissions. The
approach reduced implementation time, improved operator engagement, and delivered
actionable Al-driven recommendations without high coding requirements.

Vargas et al. [51] implemented a hybrid Lean Six Sigma (LSS) following the define,
measure, analyze, improve, control (DMAIC) methodology integrated with a Surface Ten-
sion Neural Network (STNN) to optimize garlic salt production in a condiment SME. The
STNN classified mill temperature and product humidity in real-time, enabling precise pro-
cess control and waste reduction. IoT-based sensors with a Wi-Fi module fed temperature
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and humidity data to the STNN, which was deployed on Google Cloud IoT. Compared to
a Naive Bayes (NB) classifier, the STNN achieved higher accuracy for both temperature
(97.10%) and humidity (97.31%) classification. Post-implementation, the process yield
increased from 94.22% to 97.36% (+3.14%), waste was reduced by 39.7 kg per batch, sigma
level improved by +2.13 points, and defects per million opportunities (DPMO) decreased by
551.722. Economic savings amounted to USD 158.5 per batch. This study demonstrated that
integrating Al-driven real-time classification with LSS can significantly enhance operational
efficiency, quality consistency, and sustainability in SME food manufacturing.

Liu et al. [52] empirically examined the impact of Al adoption on firm productivity
and performance in China’s food processing manufacturing industry, focusing on the medi-
ating roles of labor skill structure and total factor productivity (TFP). Using a panel dataset
of 194 listed food processing companies (1702 firm-year observations) from 2010 to 2021,
the authors constructed enterprise-level Al adoption indicators via text mining of annual
reports, identifying the first year of Al implementation through keywords such as “Al”
and “intelligent production line.” A multi-way fixed effects regression model was applied
to assess Al’s effect on return on assets (ROA), alongside robustness checks, heterogeneity
analysis, and channel mechanism testing. Results indicated that Al adoption significantly
improved firm performance, primarily through increasing the proportion of high-skilled
labor and enhancing TFP, with stronger effects observed in state-owned enterprises, capital-
intensive firms, and companies located in China’s western region. Interaction effects
showed that AI combined with higher-skilled labor or higher TFP further amplified perfor-
mance gains. The study concludes that targeted investment in skilled human capital and
Al-enabled productivity improvements can substantially enhance competitiveness in the
food processing sector.

A detailed summary of the reviewed works, including data size, modeling methods,
and evaluation metrics, is presented in Table 7.

Table 7. Summary of studies in Food Industry Efficiency and Industry 4.0 Models category.

Cite Data Size Observed Features AI Method Evaluation Results
ERP, SCADA, IoT sensor roﬂi’iﬁgzgfg’ﬁf‘g‘ft‘;re R?, R? = 0.96,
[36] data over 15 months and P humidit ,fan spee d ! Supervised RMSE, RMSE = 47.14 min,
4 high-frequency heatin /c}(];olin I:tatu,s XGBoost regressor MAE, MAE = 36.27 min,
product identification ;LT fom Chari e MAPE MAPE = 0.0056
Oven zone temperatures,
>250,000 temperature environmental variables, Supervised
[46] and operational data cutter and conveyor speeds KNN classifier Accuracy Accuracy = 0.98
points over 6 months baking quality scores
Boiler pressure, boiler air ?I;hlfgjiﬁéi{o
18 months of TloT flow, boiler fuel input, boiler 11}1) thermal
. air input temperature, inlet . .
[50] process and ambient water supply temperature Supervised ML evaluation performance,
data from multiple ambient temperature ! ANN regressor metric not reported 4% reduction in fuel
boilers and turbines humidity, wirI:d speec{ costs, >10 million
L ’ pounds/year
wind direction CO, reduction
loT sensor data Mill process temperature, . Humidity:
[51] from garlic salt garlic salt product Supervised Accuracy Accuracy = 0.97
production batches ANN classifier Temperature:

in a condiment SME

relative humidity Accuracy = 0.97
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Table 7. Cont.

Cite Data Size Observed Features Al Method Evaluation Results
ROA:
2 _
ROA, TFP, O, labor skill R= 0'(¥’1§pr <0.1)
1702 firm-year structure, ownership type, Supervised 5 R? =0.042 (p < 0.01)
[52] . leverage, growth, cash R
observations flow, firm age. region ANN regressor Labor:
e 8¢, reglon, R2 = 0.042 (p < 0.01)
actor intensity Region:
egion:

R? =0.024 (p < 0.05)

Note: The reported metrics are task-specific and should not be interpreted as directly comparable across studies.

Overview of Food Industry Efficiency and Industry 4.0 Models

Figure 10A illustrates the distribution of AI/ML techniques applied in the context of
Food Industry Efficiency and Industry 4.0 Models. NNs are the most prominent, appearing
in three studies, showcasing their strong applicability for modeling complex industrial
processes. Ensemble learning and instance-based learning methods are each used in one
study, reflecting a more limited but targeted adoption in specialized scenarios.

A S _ I
Instanced Based 1
Learning

AI/ML Technique

Number of Publications

3
L =
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Regression Classification
Task Type

Number of Publications

- Supervised

Figure 10. (A) Distribution of AI/ML techniques in Food Industry Efficiency and Industry 4.0 Models
category. (B) Types of learning approaches used in Food Industry Efficiency and Industry 4.0 Models
category. (C) Prediction task in Food Industry Efficiency and Industry 4.0 Models category.
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As shown in Figure 10B, all reviewed publications in this category rely on supervised
learning (100%). The absence of unsupervised or hybrid methods highlights the dominant
reliance on labeled datasets in industrial efficiency studies, where well-defined input-
output relationships are crucial for performance optimization.

Regarding task formulation, Figure 10C indicates a balance between regression and
classification, with three and two studies, respectively. Regression tasks emphasize the
prediction of continuous efficiency metrics (e.g., energy use, throughput, cost), while
classification tasks address categorical decision-making such as fault detection or process
state identification.

Overall, these findings reveal a methodological preference for supervised NN-based
approaches, with both regression and classification tasks playing complementary roles in
optimizing Food Industry Efficiency and advancing Industry 4.0 applications.

4. Conclusions and Future Outlook

In this review, we systematically analyzed the role of ML and Al-driven QC systems
in enhancing QC processes across the food industry. Thee selected publications were
categorized based on application domain, AI/ML technique, learning paradigm, and task
objective. As shown in Figure 11, 6 major application areas were identified across the
25 reviewed studies. The most represented categories were Food Quality Applications,
Defect Detection and Visual Inspection Systems, and Food Industry Efficiency and Industry
4.0 Models, each comprising 20% of the total (five publications each). These were followed
by Ingredient Optimization and Nutritional Assessment and Packaging—Sensors and
Predictive QC, both accounting for 16% (four publications each). The least represented
category was Supply Chain—Traceability and Transparency, with 8% (two publications).
This distribution reflects a strong focus on product-centric Al applications, while supply
chain-related innovations remain relatively underexplored.

Food Quality Applications B Packaging—Sensors and Predictive QC

I Defect Detection and Visual Inspection Systems B Supply Chain—Traceability and Transparency

Ingredient Optimization and Nutritional Assessment B Food Industry Efficiency and Industry 4.0 Models

Figure 11. Pie chart presenting the approaches according to each category.
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A clear methodological trend emerges with NNs dominating the landscape, ap-
pearing in 17 of the reviewed studies. Their widespread use underscores their strong
suitability for modeling complex nonlinear relationships and high-dimensional data
patterns across food-related applications. Ensemble learning methods are the second
most common approach, applied in six studies, suggesting moderate interest in leverag-
ing combined model strategies for improved robustness. Regression-based techniques
are used in two studies, while Bayesian methods, SVMs, and Instance-Based Learning
each appear in only one study. This distribution, illustrated in Figure 12, highlights the
dominant reliance on neural architectures for AI/ML tasks in the food sector, reflecting
their predictive power and flexibility. However, the underrepresentation of alternative
methods also suggests a lack of comprehensive benchmarking and limited exploration
of techniques that may offer advantages in terms of interpretability, computational
efficiency, or uncertainty modeling.

1 1 1 1 1
Ensemble Learning Regression Bayesian Support Vector Instanced Based

Machines Leaming

AI/ML Technique

Figure 12. Distribution of AI/ML techniques.

According to the application domain, NNs are the most dominant technique, account-
ing for 16 out of 27 model applications (59.3%) (Figure 13). They are applied across all
six sub-domains, with the highest concentration in Defect Detection and Visual Inspec-
tion Systems and Ingredient Optimization and Nutritional Assessment (four studies each,
14.8%), followed by Packaging—Sensors and Predictive QC and Industry 4.0 Models (three
studies each, 11.1%) and Food Quality Applications (two studies, 7.4%). Ensemble learning
represents the second most frequently used approach, appearing in six studies (22.2%).
These are distributed across Food Quality Applications (three studies, 11.1%) and one study
each (3.7%) in Defect Detection and Visual Inspection Systems, Packaging and Predictive
QC, and Industry 4.0 Models. Other techniques are used sparingly. Regression models
account for two studies (7.4%), appearing in Ingredient Optimization and Supply Chain
categories. Bayesian methods, SVMs, and Instance-Based Learning are each represented
in only one study (3.7%). These are applied in Packaging and Predictive QC, Ingredi-
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ent Optimization, and Industry 4.0 Models, respectively. Overall, the data reflect a clear
methodological preference for neural networks, with ensemble models forming a secondary
but broadly distributed approach. The limited presence of alternative algorithms suggests a
gap in comparative analysis and highlights the need for broader exploration of models that
may offer interpretability, efficiency, or probabilistic insights in food industry applications.

|
8 10 12 14 16

o -
I
o -

Number of Machine Learning Models
Food Quality Applications B Puckaging—Sensors and Predictive QC
S Defect Detection and Visual Inspection Systemns B Supply Chain—Traceability and Transparency
Ingredient Optimization and Nutritional Assessment BN Food Industry EMciency and Industry 4.0 Models

Figure 13. Distribution of ML techniques across methodological categories.

In terms of learning paradigm, supervised learning overwhelmingly dominates, with
23 out of 26 model applications (88.5%) employing it across all sub-domains. It is used exclu-
sively in Food Industry Efficiency and Industry 4.0 Models (five studies, 19.2%), Packaging—
Sensors and Predictive QC (four studies, 15.4%), and Supply Chain—Traceability and
Transparency (two studies, 7.7%). It also represents the majority in Food Quality Appli-
cations (six studies, 23.1%), Defect Detection and Visual Inspection Systems (four studies,
15.4%), and Ingredient Optimization and Nutritional Assessment (four studies, 15.4%). In
contrast, unsupervised learning appears only in three studies (11.5%), with one instance
each in Food Quality Applications, Defect Detection and Visual Inspection Systems, and
Nutritional Assessment. Its marginal presence suggests that although there is growing
awareness of its utility for unlabeled or exploratory analysis, the field continues to rely
heavily on labeled datasets and deterministic supervised workflows. This imbalance re-
flects both the maturity and perceived reliability of supervised learning pipelines, as well
as a lack of experimentation with alternative paradigms. Figure 14 thus highlights a clear
methodological leaning, while also pointing to untapped potential in unsupervised and
hybrid approaches within food systems research.
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Figure 14. Distribution of learning types across methodological categories.
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Classification emerges as the most common task type, appearing in 13 out of 26 stud-
ies (50%). It spans all application domains, including Food Quality Applications (three
studies), Defect Detection and Visual Inspection Systems (three), Ingredient Optimization
and Nutritional Assessment (three), Packaging—Sensors and Predictive QC (three), Supply
Chain—Traceability and Transparency (two), and Food Industry Efficiency and Industry 4.0
Models (two). Its widespread use reflects its essential role in categorical decision-making
processes, such as defect detection, sorting, and system status identification. Regression
follows closely, with 12 studies (46.2%), primarily concentrated in Food Quality Applica-
tions (3 studies), Ingredient Optimization and Nutritional Assessment (3), Defect Detection
and Visual Inspection Systems (2), Packaging and Predictive QC (1), and Food Industry
Efficiency and Industry 4.0 Models (3). These use cases highlight regression’s importance
in estimating continuous variables such as nutritional values, process parameters, or effi-
ciency metrics. Generative modeling appears only once (3.8%), exclusively within Food
Quality Applications, indicating its nascent stage in this field. Overall, Figure 15 illustrates
a balanced methodological reliance on both regression and classification tasks to address
predictive and categorical needs across food industry domains. The near absence of gen-
erative approaches suggests a promising area for future exploration, particularly in data
augmentation, simulation, and design automation contexts.

2 4 6 8 10 12 14
Number of Publications
Food Quality Applications B Packaging—Sensors and Predictive QC
B Defect Detection and Visual Inspection Systems B Supply Chain—Traceability and Transparency
Ingredient Optimization and Nutritional Assessment W Food Industry Efficiency and Industry 4.0 Models

Figure 15. Contribution of methodological categories per ML task type.

Several critical insights and future directions emerge from this analysis. Firstly, ex-
plainability and transparency remain under-addressed, particularly in DL-based systems.
Integrating explainable AI (XAI) techniques such as SHAP and LIME could significantly
enhance interpretability, particularly in regulatory-sensitive domains like food safety, en-
abling human—machine trust and diagnostic traceability. Secondly, data scarcity continues
to hinder model generalizability, especially in cases involving 3D packaging, spoilage
detection, and emerging product formulations. Investments in shared, open datasets,
synthetic data generation, and semi-supervised approaches will be pivotal in overcoming
this challenge.

Thirdly, cross-domain integration between smart packaging, supply chain analytics,
and sensor-based inspection remains limited. End-to-end ML pipelines—incorporating
traceability, predictive maintenance, and real-time quality monitoring—could enable closed-
loop automation and transparency in food manufacturing. Lastly, evaluation rigor varies
considerably across studies, with inconsistent reporting of metrics, validation protocols, and
deployment feasibility. The adoption of standardized benchmarking protocols, lifecycle-
oriented evaluation, and sustainability-driven KPIs will be essential for industrial readiness.
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Looking ahead, several promising research and development directions emerge:

e  Multi-modal integration for richer, more resilient QC systems that combine visual,
sensor, and contextual data;

e  On-device/edge deployment for real-time, low-latency decision-making, reducing
dependence on high-bandwidth connections;

e  Scalable, open datasets and benchmarking platforms to accelerate reproducibility and
cross-domain comparisons;

e  Reinforcement and adaptive learning for dynamic process control in rapidly changing
manufacturing conditions;

e  Sustainability-oriented design, optimizing QC not only for defect minimization but
also for waste reduction, energy efficiency, and circular economy goals.

In conclusion, the application of ML in food QC is a rapidly maturing field marked
by strong advances in visual inspection, quality prediction, and ingredient optimization.
However, the methodological base remains narrow, with an over-reliance on supervised
paradigms and NNs. Advancing the field will require methodological diversification,
transparent and interpretable systems, improved data infrastructure, and system-level
optimization frameworks—enabling not just operational excellence but measurable contri-
butions to industrial sustainability and democratized access to advanced QC technologies.

This review does not include the field of predictive food microbiology, which is
recognized as an important and rapidly developing area for food safety and quality control.
However, it was not part of the original scope and objectives of the study and therefore
was not incorporated into the main analysis. Additionally, the review is limited to studies
indexed in Scopus and published in English, which may have excluded relevant work
in other databases or languages. The predominance of imaging-focused studies in the
included literature also reflects a current bias in the field, and some application domains
remain underrepresented in large-scale industrial validation.

While this review covers multiple product domains—including produce, meat, dairy,
beverages, packaging, and supply chain—the depth of discussion within each category
is necessarily limited by the broad scope of the work. The primary aim was to identify
cross-cutting trends, methodological patterns, and research gaps rather than to provide ex-
haustive coverage of any single domain. In real-world deployment, ML-based QC systems
face several challenges: (i) data scarcity and variability across production environments,
(i) limited model generalizability when moving from lab to factory settings, (iii) integration
with legacy equipment and workflows, (iv) compliance with regulatory and food safety
standards, and (v) cost-benefit trade-offs in scaling advanced sensing and computing
infrastructure. Addressing these issues will be critical for translating research prototypes
into robust, industry-ready solutions.

The novelty of this review lies in its combination of a transparent PRISMA-based
methodology, a six-domain thematic framework enabling cross-domain insights, and the
integration of Industry 4.0/5.0 innovations into the food QC context. By aligning metrics
and identifying methodological and domain gaps, it provides greater systematic depth and
actionable guidance than prior reviews.
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Abbreviations

The following abbreviations are used in this manuscript:

ACE Average Causal Effect

Al Artificial Intelligence

AloT Artificial Intelligence of Things

ANN Artificial Neural Network

BN Bayesian Network

BN-SCM  Bayesian Network—Structural Causal Model
CCD Central Composite Design

CNN Convolutional Neural Network

DMC Dry Matter Content

DNN Deep Neural Network

GAN Generative Adversarial Network
GBM Gradient Boosting Machine

GMP Good Manufacturing Practices

GWP Global Warming Potential

HACCP Hazard Analysis and Critical Control Points
HAM Hybrid Attention Mechanism

HPMC Hydroxypropyl Methylcellulose

HSI Hyperspectral Imaging

IA Index of Atherogenicity

IIoT Industrial Internet of Things

IoT Internet of Things

ISO International Organization for Standardization
KNN k-Nearest Neighbors

LSS Lean Six Sigma

MAP Modified Atmosphere Packaging
MAPE Mean Absolute Percentage Error
mloU Mean Intersection over Union

ML Machine Learning

MLP Multi-Layer Perceptron

NSGA-II Non-dominated Sorting Genetic Algorithm II
or Operating Profit

PLSR Partial Least Squares Regression

QC Quality Control

RF Random Forest

RMSE Root Mean Square Error

RMSEP Root Mean Square Error of Prediction
RPD Ratio of Prediction to Deviation

RSM Response Surface Methodology

SCM Structural Causal Model

SHAP SHapley Additive exPlanations

SME Small and Medium-sized Enterprise
SVM Support Vector Machine

SVR Support Vector Regression

SSC Soluble Solid Content

STNN Surface Tension Neural Network

TFP Total Factor Productivity



Foods 2025, 14, 3424 33 of 35

VNIR-HSI  Visible and Near-Infrared Hyperspectral Imaging

XAI Explainable Artificial Intelligence
XGBoost Extreme Gradient Boosting
YOLO You Only Look Once
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