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Food safety is no longer just a lab issue; it’s a real-world challenge that affects everyone from farmers and
vendors to regulators and consumers. With rising concerns about adulteration, spoilage, and contamination in
everyday items like milk, oils, fruits, and ready-to-eat meals, traditional testing methods often fall short; they’'re
too slow, too expensive, and not designed for real-time action. This review explores how artificial intelligence
(AI) and machine learning (ML) are stepping in as game-changers. We highlight real case studies where Al
models, combined with tools like spectroscopy, smart sensors, and computer vision, are detecting food fraud and
spoilage quickly and accurately. Beyond the technology, we also discuss challenges like data gaps, model trust,
and affordability in rural areas, while offering forward-looking solutions like federated learning and low-cost AI
devices. This review will be especially valuable for food scientists, quality assurance professionals, tech de-
velopers, policy-makers, and startups looking to build safer, smarter food systems. It’s a practical guide for
turning Al innovation into real-world food safety solutions.
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1. Introduction

Food is one of the most essential elements of life, and yet, ensuring its
safety remains one of the most challenging tasks in the modern world. In
both developing and developed nations, concerns related to food adul-
teration, spoilage, contamination, and mislabelling are growing at an
alarming rate (Bansal et al., 2017; Deshmukh et al., 2025). The
complexity of today’s food supply chains, which often span multiple
countries and involve diverse storage, transport, and processing condi-
tions, further increases the risk of compromised food safety. Ordinary
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food commodities such as milk, spices, edible oils, grains, pulses, fruits,
vegetables, beverages, and sweeteners are often adulterated with un-
desirable or non-permitted substances (Anagaw et al., 2024; Machado
Nardi et al., 2020). For example, urea or detergents may be blended with
milk to raise the viscosity and foaming capacity of the product, while
turmeric and chili powder may be added with lead chromate to enhance
appearance. Mustard oil, a staple in many households, is sometimes
diluted with the highly toxic argemone oil. Grains and pulses may un-
dergo artificial polishing to increase shine, and fruits are often ripened
using calcium carbide or coated with waxes to improve visual appeal.
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Similarly, used tea leaves are dyed and reused, while sugar and salt are
contaminated with chalk powder or washing soda. Even seemingly
natural products like honey may be diluted with glucose or sugar syrup,
and fruit juices may contain synthetic colors or preservatives far beyond
safe limits (Hoque & Mondal, 2019; Li et al., 2021). In order to provide
some clarity, various food adulteration examples have been grouped
into examples of dairy, oils, spices, grains, fruits, sweeteners, and
miscellaneous. Each example has a summary of common adulterants and
their associated health risks (summarized in Table 1). This arrangement
aids in comprehending food fraud and demonstrates the broad health
risks associated with varying types of food.

These adulterants and contaminants might not only change taste and
remove nutritional value, but also present potential health threats
ranging from intestinal infection, kidney damage, nervous system
impairment, or cancer in extreme situations. The economic costs are
substantial, too. This adds up to lost products and damage to brand
reputation through loss of product integrity, regulatory fines, or health
care costs (Vagsholm et al., 2020). Although traditional methods of food
testing, such as chemical testing or culture for specific microbes, may be
precise, they take significantly more time, money, and laboratory setup
and equipment. In this way, the scalability is also an issue for real-time
food protection, or monitoring food from production through con-
sumption. To address these limitations, artificial intelligence (AI) and
machine learning (ML) have emerged as powerful tools in the domain of
food safety. Al has the potential to alter how we detect, monitor, and
predict food-related risks. By leveraging large volumes of data, whether
from sensors, images, spectral analyses, or even text, Al models can learn
patterns that differentiate safe food from unsafe food and can do so in
real time (Chhetri, 2024; Karanth et al., 2023; Liu et al., 2023). More
importantly, Al systems can scale across locations, adapt to different
types of food, and be embedded into smart devices for continuous
monitoring. As shown in Fig. 1, traditional food safety workflows consist
of time-consuming and sequential tasks, including sample collection, lab
testing, and human interpretation, which are inherently reactive and
labor-consuming. In contrast, Fig. 1 demonstrates an Al-powered food
safety system that is able to streamline food safety workflows with
simultaneous data ingestion and predictive analytics to create proactive
and scalable solutions (Kakani et al., 2020).

A variety of AI/ML techniques have already shown success in specific
food safety applications. In milk adulteration detection, support vector

Table 1
Common food adulterants by category and associated health risks.

Category Common Typical Associated Health Risks
Food Items Adulterants
Dairy Products Milk Urea, Detergents, Kidney damage,

Edible Oils

Spices &
Condiments

Grains & Pulses

Fruits &
Vegetables

Sweeteners &
Beverages

Miscellaneous

Mustard oil,
Coconut oil
Turmeric,
Chili powder,
Coriander
Wheat, Rice,
Lentils

Bananas,
Mangoes,
Apples

Sugar, Honey,

Fruit Juices

Tea leaves,
Salt

Starch

Argemone oil,
Paraffin wax
Lead chromate,
Sudan dyes,
Sawdust
Polished with
artificial agents,
stone chips,
coloring agents
Calcium carbide,
Wax coating,
Artificial ripening
agents

Chalk powder,
Glucose syrup,
Synthetic food
colors

Iron fillings,
washed/dyed used
leaves, Washing
soda

gastrointestinal issues,
metabolic disorders
Glaucoma, liver
toxicity, cardiac issues
Carcinogenic effects,
anemia, and
neurological disorders
Digestive tract
irritation, kidney
problems

Respiratory issues,
neurotoxicity, and
potential
carcinogenicity
Tooth decay, diabetes
risk, liver stress, and
cancer risk

Abdominal issues,
dental enamel
corrosion, and potential
poisoning
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Fig. 1. A Comparative Overview of Traditional vs Al-Driven Food Safety
Workflows: Enhancing Efficiency, Accuracy, and Accessibility.

machines (SVM) trained on near-infrared (NIR) or Fourier transform
infrared (FTIR) spectroscopy data can identify the presence of urea,
starch, and detergents with accuracy exceeding 95 %. For edible oils, ML
models like XGBoost have been effectively used to distinguish between
pure and adulterated samples by analyzing their spectral fingerprints. In
the domain of fruits and vegetables, convolutional neural networks
(CNNs) can analyze images to detect ripeness, bruising, fungal in-
fections, or chemical residues on the surface. These models are not
limited to visible contaminants, they can also flag subtle changes that
are hard for human eyes to detect (X. Wang et al., 2022; Ben Ayed &
Hanana, 2021). AI’s applications in this area do not end. In packaged
meat and ready-to-eat meals, deep learning models that involve CNN
and long short-term memory (LSTM) networks can analyze images and
supplemental environmental information (e.g. temperature and hu-
midity) to predict how long a product would be good for sale and the
spoiling onset. Blockchain combined with Al is another emerging solu-
tion, allowing for traceable, tamper-proof tracking of food products
along supply chains (Dhal & Kar, 2025a; Kumar et al., 2021).

Al algorithms can detect anomalies in distributed ledger entries,
helping to ensure the authenticity and safety of food items across bor-
ders. Despite these advances, several challenges still limit the wide-
spread adoption of Al in food safety. A key issue is data availability.
Reliable AI models require large, high-quality datasets that are repre-
sentative of a wide variety of different geographies, food products, and
food adulteration approaches. However, food safety data is typically
fragmented, inconsistent, or simply unavailable due to privacy issues or
a lack of infrastructure. For example, a model trained on milk samples
from India will likely not perform well on samples from Europe because
they may have different additives or processing techniques. Also, many
of the deep learning and Al models, while accurate, often operate as
black boxes, and this lack of interpretability can result in food regulators
or quality assurance professionals simply not trusting the predictions
enough to act on them. Finally, for many rural and under-resourced
areas of the world, there may be a lack of sensors, power supply, or
internet infrastructure that would further make Al solutions challenging
to deploy or implement (Ennab & Mcheick, 2024; Mu et al., 2024; Sal-
hab et al., 2024).

To address these limitations, researchers and innovators are
exploring a number of valuable approaches. One approach is federated
learning, which allows several clients to train a common AI model
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without needing to share raw data, all while also protecting privacy and
maintaining diversity. Another is generating synthetic data, which can
serve as an alternative when the number of real-world datasets is
limited. Multimodal AI models, which can integrate data from cameras,
gas sensors, electronic tongues, and olfactory sensors (e-noses), provide
a more holistic picture of food quality and safety. These models can
detect multiple forms of adulteration simultaneously and adapt to
different types of food products (Gbashi & Njobeh, 2024; Yu et al., 2022;
Zhang et al., 2024). This review aims to explore the full potential of Al in
food safety from a scientific and application-oriented perspective. It
begins by introducing different types of machine learning, supervised,
unsupervised, and reinforcement learning, and how each type supports
various food safety tasks. For example, supervised learning is used for
classifying adulterated vs. pure food samples, while unsupervised
learning helps detect anomalies in large-scale food processing systems.
Reinforcement learning is being explored for real-time decision-making
in automated food inspection and smart kitchen environments. Next, we
delve into the key machine learning models, including decision trees,
random forests, SVMs, CNNs, RNNs, and ensemble models, highlighting
their strengths and specific food safety use cases.

Following the technical overview, we analyze important perfor-
mance metrics such as accuracy, precision, recall, F1-score, and area
under the curve (AUC), all of which are critical for evaluating model
reliability, especially in real-world settings. We also present real-world
case studies to illustrate how these Al techniques are being applied
across different food categories, from milk and meat to fruits, juices, and
grains. Finally, we examine existing challenges and propose future di-
rections, such as integrating AI with biosensors, using synthetic data
generation, and building globally interoperable AI models for food
safety. By focusing on practical examples across diverse food categories,
milk, spices, oils, grains, fruits, beverages, and more, this review high-
lights the current landscape, gaps, and future promise of Al in ensuring
food safety. The overarching goal is not only to summarize technological
progress but to guide future research and development toward making
food safer for everyone, everywhere. With the right mix of innovation,
collaboration, and regulatory support, Al can serve as a powerful safe-
guard in the global food system, capable of protecting consumers,
improving transparency, and ultimately building a safer food future.

2. Types of ML relevant to food safety

ML is not a one-size-fits-all technology; there are different ways it can
learn depending on the type of data and the problem it needs to solve. In
the context of food safety, the three most important types of learning are
supervised learning, unsupervised learning, and reinforcement learning.
Each of these plays a unique role in helping us detect, classify, or even
predict problems related to food adulteration, spoilage, and contami-
nation. Choosing the right type of learning method depends on whether
we already know what we’re looking for, or if we need the system to
discover unknown patterns on its own (Morales & Escalante, 2022).

Supervised learning is the most commonly used approach to food
safety. It involves training an algorithm on a dataset with labeled ex-
amples where the correct answer is already known. For example, if we
want a machine to detect adulterated milk, we can use thousands of milk
samples that each have labels “pure” or “adulterated” and include the
specific adulterant, such as urea, starch, or detergent. Once the model is
trained, it can make predictions on new (previously unseen) milk sam-
ples with a high degree of accuracy. Methods such as Support Vector
Machines (SVM) and Random Forests are particularly effective here and
are typically applied to spectroscopy data, for example, near-infrared
(NIR) or Fourier-transform infrared (FTIR), to reveal chemical signa-
tures of adulterants. Similarly, for fresh produce like fruits and vegeta-
bles, Convolutional Neural Networks (CNNs), a type of deep learning
model, can analyze images to spot signs of spoilage, bruising, or over-
ripeness. Because supervised models learn from labeled examples,
they are great for classification tasks where we already know what
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“good” and “bad” food looks like.

At the same time, unsupervised learning is sometimes used when we
have unlabeled data or when we don’t know exactly what we expect.
These models will identify hidden patterns or groupings on their own. In
food safety, unsupervised learning is sometimes used to identify unusual
behavior or unexpected changes in the process. For instance, in a food
processing plant, sensors collect massive amounts of data about tem-
perature, humidity, or gas emissions. Algorithms like K-means clustering
can group this data to identify patterns of normal operation and detect
when something abnormal, like early spoilage or a machine malfunc-
tion, starts to happen. Likewise, hyperspectral imaging, including for
spices or edible oils, has also been found to reveal finer differences be-
tween pure and adulterated products by using dimensionality reduction
methods (e.g., Principal Component Analysis (PCA)). The unsupervised
modeling may not provide direct insight into what the issue was, but is
useful in marking an area that may warrant further investigation
(Haldorai et al., 2020; Rajoub, 2020).

The third category, known as reinforcement learning, is still devel-
oping in the area of food safety. However, reinforcement learning offers
the potential for advancement, particularly in decision-making sce-
narios with a real-time approach. Reinforcement learning operates,
essentially, like trial-and-error modeling. There is an entity (the “agent™)
that interacts with its environment, collects data based on the role of the
environment when taking an action sequence, just as humans typically
do, to learn the task through taking an action and being rewarded or
punished for that action. In food processing or storage, reinforcement
learning can help maintain ideal conditions by constantly adjusting
parameters like temperature, airflow, or conveyor speed based on sensor
input. For example, if a sensor detects an increase in humidity that could
lead to spoilage, a reinforcement learning system might learn to activate
cooling or drying mechanisms to prevent quality loss. Some early ex-
periments have used Reinforcement learning to manage cold-chain lo-
gistics, ensuring perishable foods like meat or dairy are stored under
optimal conditions while reducing energy usage. Though still in devel-
opment, reinforcement learning has the potential to make food safety
systems more autonomous and responsive in the future (Kish, 2018).

Among these three learning types, supervised learning is currently
the most popular and widely adopted in food safety applications. The
main reason is that it provides highly accurate results when good-quality
labeled data is available, which is often the case for common tasks like
detecting adulterants in milk, classifying the quality of fruits, or pre-
dicting shelf-life based on environmental data. Models like SVM,
Random Forest, and CNN are supported by mature libraries and toolKkits,
making them easier to implement and integrate into existing food
quality monitoring systems. Also, since supervised learning models can
give very specific results, like “this honey contains sugar syrup” or “this
batch of turmeric contains lead chromate”, they are particularly useful
for regulatory and compliance checks. That said, both unsupervised and
reinforcement learning are gaining ground, especially in situations
where labeled data is limited or unavailable. As more food production
systems become digitized and connected through IoT sensors, the need
for smart, real-time, and adaptable learning systems will grow. In such
cases, combining all three learning approaches may offer the most
powerful and flexible solution for food safety management (M. Bhaiyya
et al., 2024).

3. Key AI/ML models used in food safety
3.1. Decision trees and random forests

DT and RF are among the most widely used ML models in food safety
applications. These models are particularly valued for their simplicity,
interpretability, and ability to handle both categorical and numerical
data. DT mimics the way humans make decisions by asking a series of
yes/no or if/else questions and is very effective in classification prob-
lems. RF builds on this concept by combining many decision trees to
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improve prediction accuracy and reduce the risk of overfitting (Refer to
Fig. 2(A)). To make this easier to understand, let’s walk through a real-
world example involving the detection of milk adulteration using
spectroscopy data and RF (M. L. Bhaiyya et al., 2023; Manekar et al.,
2025). In summary, DT and RF strike a great balance between inter-
pretability and performance when it comes to food safety; this is why
these ML approaches are often used. While DT is easy and interpretable
by itself, RF adds a significant level of reliability and reproducibility to
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the original dataset, often reducing the noise in the Dataset. Further-
more, their ability to handle larger amounts of real-world food quality
data, whether it be images, sensor data, or spectral data, makes them
one of the most used and trusted ML models in the industry.

3.2. Support vector machines (SVM)

Support Vector Machines, or SVMs, are one of the most powerful
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Fig. 2. (A) DT and RF: Ensemble-based prediction of milk purity using 100 decision trees and majority voting to classify samples as pure or adulterated. (B) SVM:
SVM model classifying milk samples by finding the optimal hyperplane separating pure and adulterated classes using support vectors. (C) Step-by-step architecture of
a CNN used to classify tomatoes based on ripeness using image features. (D) Sequential LSTM model predicting meat spoilage based on time-series sensor data,
tracking environmental changes to enable early intervention. (E) K-means clustering groups food samples based on features like temperature, humidity, and gas levels
to identify spoilage risk without predefined labels. (F) A unified technical classification framework for AI/ML models used in food safety.
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tools in ML, especially when it comes to making decisions based on
subtle differences in data. In the context of food safety, SVMs are
commonly used to detect food adulteration, particularly in cases where
we have chemical or spectral data that can tell us what’s inside a food
sample. What makes SVMs special is their ability to find a clear dividing
line (or boundary) between two categories, for example, “pure milk” and
“milk with urea”, even when the data is complex and not easily sepa-
rated. Let’s take a practical example. Suppose we want to detect whether
milk samples are adulterated with urea, a harmful chemical sometimes
added to make the milk look richer in protein. Every milk sample is
passed through a near-infrared (NIR) spectrometer, which measures
how the milk absorbs light at different wavelengths. Each sample pro-
duces a set of numbers that together act like a fingerprint, unique to that
sample’s chemical composition. These spectral patterns become our
input data. For training the model, the lab also adds labels like “pure” or
“adulterated,” based on confirmatory chemical tests. This labeled data
forms the foundation of the supervised learning process (Srivastava
et al., 2023).

Now, when we train an SVM model on this data, it essentially looks at
all the pure and adulterated samples and tries to find the best possible
boundary between them. But it doesn’t just pick any random line.
Instead, it finds the one that leaves the widest possible gap (or margin)
between the two classes, like creating a buffer zone between “safe” and
“unsafe.” The data points that sit closest to this boundary are called
support vectors, and they help define the exact placement of this deci-
sion line. To understand this more visually, imagine plotting the spectral
values of milk samples on a graph. The SVM draws a line between the
two categories in such a way that it doesn’t just barely separate them; it
gives some breathing room to avoid mistakes when new samples are
tested. This makes SVMs especially good at avoiding false alarms while
still catching most of the problematic cases (Liang et al., 2024, 2025; Ni
et al., 2023).

Once the model is trained, we can use it to predict the status of a new
milk sample, shown in Fig. 2 (B). The new sample is scanned by the NIR
spectrometer, and its data is fed into the SVM model. If the sample falls
on the “pure” side of the boundary, the system classifies it as safe. If it’s
closer to the side that matches previously adulterated samples, it gets
flagged for further testing. This whole process takes just a few seconds
and can be automated to work in real-time at collection centers or milk
processing units. What makes SVM particularly useful in this kind of
problem is its ability to handle complex, high-dimensional data like
spectra. Even if the pure and adulterated samples don’t follow a clear
linear pattern, SVM can use something called the kernel trick to bend the
decision boundary into a shape that fits the data better. This flexibility
means that SVM can handle real-world complications like noisy data or
overlapping features. In conclusion, SVM is akin to a clever filter. It
learns the differences between uncontaminated and contaminated food
samples by analysing the chemical or spectral fingerprints. Once the
training is completed, it makes fast, correct decisions and helps labs and
food inspectors to catch dangerous adulterants before they get to the
consumer. For any food product where chemical composition tells the
story, such as milk, honey, spices, or oils, SVM can be the best, reliable,
and efficient option.

3.3. Partial Least Squares (PLS)

Partial Least Squares (PLS) offers a robust regression method spe-
cifically designed to analyze complicated high-dimensional data, such as
spectra of food samples. PLS methods do not use all of the original
variables; some of which may be noisy and share a high correlation. PLS
takes the complicated input data (like absorbance values from NIR or
FTIR) and throws away those individual (and difficult to interpret)
variables in favour of a smaller number of new features called latent
variables, that nonetheless capture nearly all of the information that
suggests a relevant pattern linking the input to an outcome (like the level
of adulteration or microorganisms spoilage). Whereas some approaches
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consider solely the input data in determining a predictive outcome, PLS
supports and identifies meaningful patterns directly available for pre-
dicting outcomes. This is particularly relevant in food safety applica-
tions, where often the analysis is only the measure of subtle differences
in chemistry or the prediction of levels of contamination from sensory
input data. Every day, there are articles in the scientific literature dis-
cussing the need for quantified predictors of food quality, whether this is
an estimation of sugar syrup in honey, gas freshness in a packaged fruit,
or food. PLS is a useful approach in all of these contexts, with accuracy
and speed vital for the current generation in real-life monitoring of food
quality (Liang et al., 2024, 2025; Ni et al., 2023).

3.4. Convolutional neural networks (CNNs)

CNNs (Convolutional Neural Networks) are a type of deep learning
model optimized for image applications in food quality assessments, like
detecting mold on bread, fruit ripeness grading, and bruising detection
in vegetables, as shown in Fig. 2 (C). CNNs automatically learn hierar-
chical visual features, such as edges, textures, or patterns, directly from
raw images without requiring manual feature engineering. In food
safety, this enables real-time, non-invasive inspection of surface-level
spoilage or visual adulteration. CNNs are appreciated for their scal-
ability to various image datasets and their capacity to manage compli-
cated visual patterns, often beyond the detection capabilities of
conventional methods or human inspectors (M. Bhaiyya et al., 2024;
Singhal et al., 2025). CNN is like a super-powered visual inspector. They
can examine thousands of food items in real-time, pick out the tiniest
signs of spoilage or contamination, and make accurate, consistent de-
cisions. Their layered structure, from simple edge detectors to complex
classifiers, allows them to “understand” food images much like a trained
quality inspector would, but faster and more reliably (Alzahrani, 2025;
Ko et al., 2021).

3.5. Recurrent Neural Networks (RNNs) and long short-term memory
(LSTM)

Recurrent Neural Networks (RNNs) and Long Short-Term Memory
(LSTMs) are developed for use with sequential or time-series data,
making it appropriate to use these algorithms to predict progressions
towards spoilage, or to track environmental parameters in a refrigerated
environment, such as temperature and gas concentrations. While RNNs
track short-term dependencies, LSTMs improve on this by capturing
both short- and long-term temporal trends, thanks to their internal
memory architecture (Ding et al., 2025; Geng et al., 2022). In the
context of food safety, LSTM can predict the possibility of spoilage of a
product using past sensor data and make notified decisions in the active
cold chain or packaged food supply chain, as shown in Fig. 2 (D). Their
predictive ability arises from uncovering data points in time and
providing forecasts for degradation of quality trends before they are
critical (H. Lu et al., 2025; Sun et al., 2022; G. Wang et al., 2025).

Food doesn’t go bad instantly; it follows a process. That process in-
volves many small changes over time. Whether it’s the slow rise of
temperature in a refrigerator or increasing gas levels in sealed pack-
aging, these changes follow a time-dependent pattern. RNNs and espe-
cially LSTM models are great at spotting such patterns. While CNNs are
excellent for image-based tasks and RFs are great for classification, they
don’t handle sequences very well. They can look at one moment and say
“this is spoiled” or “this is not”, but they don’t consider what’s been
happening over the past few hours or days. RNNs and LSTMs do. They’re
designed to connect the dots over time and make smarter, context-aware
predictions. In conclusion, RNNs and LSTM models are similar to food
safety prognosticators. They do not solely respond with the immediate
future in mind; they use past information to recognize trends and fore-
cast what will possibly happen next. In an environment where a handful
of hours can transform a food item from fresh to spoiled, these models
are becoming valuable assets for developing smarter and safer food
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systems.

3.6. Clustering algorithms (K-means)

K-means is perhaps one of the most popular clustering techniques in
ML, especially in the case of clustering data to explore patterns without
pre-defined labels. In the context of food safety, K-means could be very
handy to find hidden trends for spoilage, cluster similar food batches, or
catch early signs of quality issues, without telling the system what to
investigate, as shown in Fig. 2 (E). K-means is a kind of unsupervised
learning wherein the instruction is based solely on the sample data
without supervision, and the model finds clusters based on similarity
(Agarwal et al., 2023; Q. Chen, 2024). The reason K-means is so useful in
food safety is that it provides early, data-driven insights even before we
have ground truth labels. It’s fast, simple to implement, and can work on
large datasets with multiple variables. And while it doesn’t make direct
predictions like supervised models, it helps reveal hidden structures in
the data, which can then guide decision-making, resource allocation,
and further testing.

4. Performance metrics for food safety models

Building an Al model for food safety is only half the job. The other
half is measuring how well it performs, because when it comes to
detecting adulteration, spoilage, or contamination, even a small error
can have serious consequences. That’s where performance metrics come
in. These metrics help us (shown in Fig. 2 (F)) understand whether the
model is just good on paper or actually useful in the real world. Accuracy
is the most basic metric; it tells us how often the model is right. But in
food safety, accuracy alone can be misleading. Imagine a model that
calls everything “safe” in a batch where only 5 out of 100 samples are
actually adulterated. It may be 95 % accurate, but it’s dangerously
useless. That’s why we look deeper. Precision shows how many of the
items flagged as “unsafe” truly are unsafe. It helps avoid false alarms and
food wastage. Recall, on the other hand, tells us how many unsafe items
the model actually caught. A high recall is vital when missing even one
contaminated product could put lives at risk. F1-score combines both
precision and recall, useful when we need a balance between catching
real threats and avoiding unnecessary rejections. A confusion matrix
gives a complete picture of how many samples were correctly or
incorrectly classified, and in what way. It helps identify if the model is
being too strict, too lenient, or missing key patterns. For models that
make predictions over time, like estimating when food will spoil, we use
MAE (Mean Absolute Error) or RMSE (Root Mean Squared Error). These
tell us how far off the model’s predictions are. Lower values mean better
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accuracy, which is critical in cold chains or shelf-life forecasting.
Another important metric is inference time, how quickly the model
makes a decision. In real-time environments like sorting fruits on a
conveyor or scanning milk cartons, even a 1-s delay can slow down
operations. So, fast and efficient models are preferred here. Lastly, ROC-
AUC helps us see how well a model separates safe and unsafe items
across different threshold settings. It’s especially helpful when we want
to compare multiple models before choosing the best one. In short,
different tasks need different metrics. A model for allergen detection
needs high recall. A model for grading fruits may focus on accuracy and
speed. Choosing the right metric isn’t just a technical decision; it’s about
safety, efficiency, and trust (Kahar et al., 2023; Zalke et al., 2024). To
make this information more accessible to practitioners and engineers
working in food safety, we summarize these metrics in Table 2, along
with specific food safety examples and why each metric matters in
real-world contexts.

5. Real-world case studies of Al in food safety

5.1. Case-based insights across dairy, oils, spices, and pulse adulteration
detection using AI-ML models

The real power of Al and ML in food safety comes to life when we
look at how these technologies are being applied across different food
categories. From milk and honey to spices and juices, researchers have
explored a variety of Al-driven solutions to detect adulterants quickly,
accurately, and non-destructively. These case studies not only highlight
the potential of AI/ML but also show how each application contributes
to safer, more transparent food systems.

In the dairy sector, a 2024 study addressed the problem of real-time
detection of milk adulterants such as starch and urea, which are
commonly used to manipulate protein content. Using a multi-sensor [oT
setup comprising pH, VOC, fat/protein, and conductivity sensors, the
system captured detailed chemical signatures of milk samples, as shown
in Fig. 3 (A). An ensemble ML model integrated with SHAP explain-
ability achieved 96 % accuracy, enabling both accurate predictions and
interpretability. Compared to traditional chemical assays, this system
offered real-time operation and portability, making it well-suited for
supply chain monitoring (K. Goyal et al., 2024). Building upon the
success in dairy, another study focused on detecting adulteration in
edible oils, a common practice involving dilution with paraffin or castor
oil, as shown in Fig. 3 (B). The researchers used hyperspectral imaging to
capture fine spectral differences across oil samples. Preprocessing with
Savitzky-Golay filtering enhanced data quality, and models including
RF, SVM, and LDA were employed for classification. The LDA model

Table 2
Performance metrics for AI models in food safety applications.
Metric Definition Application in Food Safety Importance
Accuracy Percentage of total correct predictions Classifying fruit as “ripe”, “overripe”, or General reliability of the model across all predictions
“spoiled” using CNN
Precision TP/(TP + FP): How many predicted positives  Identifying contaminated milk samples Reduces false alarms, prevents unnecessary rejections
are actually correct without wrongly flagging pure ones
Recall TP/(TP + FN): How many actual positivesare ~ Detecting all spoiled ready-to-eat meals Critical as missing unsafe samples can cause health hazards
(Sensitivity) detected
F1-Score Harmonic mean of precision and recall Evaluating model performance in honey Balanced performance when both FP and FN need to be
adulteration detection minimized
Confusion Breakdown of true vs. false classifications Evaluating model predictions for multi-class Helps diagnose if the model is biased or misclassifying
Matrix across all classes food classification (e.g., spices) specific classes
ROC-AUC Measures the ability to separate classes across ~ Comparing models in detecting adulteration in ~ Helps choose the best model for binary food safety
thresholds edible oils classification
R2 Score Proportion of variance in the dependent Quantifying adulterant concentration in honey  Indicates model fit for regression tasks; important in shelf-
variable explained by the model using PLSR or SVR models life prediction and spoilage quantification
MAE/RMSE Error between predicted and actual values Predicting shelf-life of packaged meat using Evaluates how close model forecasts are to real-world values

Inference Time
Confidence
Score

(continuous output models)

Time taken for the model to give output
Model’s probability estimate of prediction
correctness

sensor data + LSTM

Real-time fruit grading on conveyor belts
Reporting confidence in detecting sugar syrup
in honey

Important for high-speed industrial automation
Useful for regulators and QA teams to assess trust in
predictions
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Fig. 3. (A) Al-based milk adulteration detection using ensemble ML models, taken from (K. Goyal et al., 2024), with the permission of Elsevier. (B) Spectral and
ML-Based detection of adulteration in Edible Oils, taken from (Aqeel, Sohaib, Igbal, Rehman, & Rustam, 2024), with the consent of Elsevier. (C) Coconut water
adulteration detection using FTIR spectra and ML algorithms, taken from (Teklemariam et al., 2024), with the permission of Elsevier. (D) Deep Learning architecture
for honey adulteration detection from Raman Spectra, taken from (X. Wu et al., 2022), with the permission of Elsevier. (E) Al-Driven spectroscopic analysis for starch
adulteration in turmeric powder, taken from (Lanjewar, Asolkar, et al., 2024) with the permission of Elsevier. (F) Al-Powered detection system for chickpea flour

adulteration, taken from (Saha et al., 2023) with the permission of Elsevier.

achieved 100 % validation accuracy, demonstrating that
non-destructive imaging-based approaches can outperform GC-MS or
HPLC in speed, cost-efficiency, and ease of use (Aqeel, Sohaib, Igbal,
Rehman, & Rustam, 2024).

Transitioning from oils to beverages, a study investigated the adul-
teration of coconut water with sugar-based additives. The researchers
developed a fingerprint database using ATR-FTIR spectroscopy of 15
adulterants, as shown in Fig. 3 (C). Two models, RF and 1D CNN, were
trained on the spectral data, with the CNN achieving 96 % classification
accuracy directly from raw spectra. This eliminated the need for manual
feature engineering, highlighting the model’s efficiency and practicality

for real-world deployment (Teklemariam et al., 2024). A similar deep
learning framework was applied to detect syrup-based adulterants in
honey, a high-value product often diluted with high fructose or rice
syrups. The study employed Raman spectroscopy combined with CNN
and PLS regression, as shown in Fig. 3 (D). The CNN yielded >97 %
classification accuracy, while PLS achieved R? > 0.98 for quantitative
prediction. These results indicate a marked improvement over conven-
tional HPLC or isotope ratio analysis, offering a non-invasive, rapid, and
field-deployable solution (X. Wu et al., 2022). Extending the focus to
powdered foods, another study tackled starch adulteration in turmeric
powder, a common but harmful practice. Using a combination of
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visible-NIR spectroscopy and multispectral imaging, the researchers
applied RF and DenseNet201 architectures to detect adulterants at trace
levels, as shown in Fig. 3 (E). With an Fl-score exceeding 92 %, the
method proved to be both sensitive and scalable. This study also
emphasized the benefit of combining multiple imaging modalities to
boost detection robustness (Lanjewar, Asolkar, et al., 2024).
Authentication challenges were also tackled in tea and spice prod-
ucts. In one study, UV-Vis spectroscopy combined with PLS-LDA and
SVM models successfully distinguished black tea samples based on their
narrow geographic origin, with 98 % accuracy. This chemical
fingerprinting-based technique provides an affordable and scalable
alternative to isotope or metabolomics-based geographic authentica-
tion, enhancing traceability and transparency in global tea markets
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(Mohammadi et al., 2024). To address adulteration in coriander powder,
FTIR spectroscopy was merged with ML models such as ANN and SVR.
The optimized models predicted sawdust adulteration with R? values
exceeding 0.96, making the system suitable for both qualitative and
quantitative adulteration analysis. This approach not only supports
automated, high-throughput monitoring but also demonstrates how
spectral-ML frameworks can be tailored for specific species (R. Goyal
et al., 2025). Finally, in the domain of pulses, a study explored the
adulteration of chickpea flour with metanil yellow, a toxic dye. The
researchers employed line-scan NIR hyperspectral imaging, which pro-
vided pixel-wise spectral profiles. Using 1D CNN and PLS regression,
they achieved an R? of 0.992, successfully identifying adulteration down
to 0.1 % concentration, as shown in Fig. 3 (F). Compared to traditional
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Elsevier. (B) Deep Learning-Based shelf-life prediction of mushrooms via image classification, taken from (Javanmardi & Ashtiani, 2025) with the permission of
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of Springer.



P. Balakrishnan et al.

spot sampling, this approach enabled continuous monitoring of pro-
duction lines, paving the way for real-time industrial integration (Saha
et al., 2023).

Together, the case studies of Section 5.1 reveal the range of AI/ML
applications across a broad range of food matrices, such as dairy, edible
oils, spices, and pulses. They show how strong the effect is in terms of
using spectroscopy/imaging combined with various classification and
regression models, such as SVM, RF, CNN, and PLS, for rapid and non-
destructive detection of adulteration. But, examining the models more
closely exposes additional common limitations: most models are
developed assuming a limited dataset or a dataset produced in the lab,
and may not be able to fully encapsulate the variability that real-world
food supply chains have. It would also be difficult to generalize these
models to other arbitrary geographies, variations in raw materials, and
complex mixtures of adulterants. Furthermore, the lack of deployment-
ready prototypes, especially in low-resource settings, suggests a gap
between technological promise and field-level adoption. A more
rigorous focus on transfer learning, domain adaptation, and low-cost
sensor integration could help bridge this translational divide in future
work.

5.2. Predicting shelf-life of packaged meat, smart grading of fruits and
vegetables through Al and ML

As the global food industry grapples with issues of waste reduction
and consumer safety, AI/ML technologies are emerging as powerful
tools for real-time freshness evaluation and smart quality grading of
perishable products. In addition to monitoring for adulteration, AIl/ML
technologies are now being utilized for predictions of shelf-life and
freshness assessment across perishable animal- and plant-based food
products. These case studies demonstrate how sensor data, in combi-
nation with advanced predictive models, can provide non-invasive and
real-time measures of quality decline.

A representative example comes from a study that tackled the chal-
lenge of predicting microbial spoilage in packaged minced pork. Re-
searchers collected spectral and multispectral imaging data from meat
samples stored under varying temperature and packaging conditions, as
shown in Fig. 4 (A). Using SVM-based regression models, the system
could predict microbial counts with RMSE as low as 0.886, demon-
strating excellent quantitative forecasting. This model outperformed
conventional microbial plate assays, offering a non-destructive, real-
time alternative suitable for inline quality monitoring in meat process-
ing plants (Fengou et al., 2020). Building on this, another study
addressed freshness prediction in mushrooms, one of the most perish-
able food items. By capturing high-resolution images of white button,
oyster, and shiitake mushrooms at regular storage intervals, the research
team trained multiple deep learning models, including ResNet-50, Effi-
cientNet, and MobileNetV2, as shown in Fig. 4 (B). These models ach-
ieved over 94 % accuracy in classifying freshness stages, aided by
transfer learning to speed up convergence. The approach bypassed the
need for complex chemical tests and offered a rapid, low-cost, and
smartphone-compatible method for freshness evaluation (Javanmardi &
Ashtiani, 2025).

Moving from fungi to fresh produce, another study introduced a
smart packaging system for vegetables and fruits like okra, plums, and
jujube using 3D-printed COs-sensitive freshness labels, as shown in
Fig. 4 (C). These labels used bromothymol blue and methyl red dyes that
changed color based on CO; accumulation during spoilage. Images of
the labels were then analyzed using lightweight CNNs such as GhostNet
and MobileNetv2, achieving accuracy above 93 % across multiple
freshness levels. This innovation offered a fusion of chemical sensing
and Al, presenting an affordable, scalable freshness indicator that can be
integrated directly into packaging (T. Tang et al., 2025). Complement-
ing this direction, another study aimed to grade pomegranate fruits
based on internal acidity (pH), a critical quality metric. By analyzing
image features like crown shape and skin texture, researchers trained
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ANN and ANFIS models to estimate internal pH values, as shown in
Fig. 4 (D). The models reached R? = 0.984, enabling rapid grading of
fruits for juice, dessert, or processing purposes. Compared to conven-
tional titration or destructive testing, this method provided a
sensor-free, real-time alternative with high commercial utility (Fashi
et al., 2020).

In conclusion, this section illustrates the increasing potential of Al/
ML to evaluate freshness and predict shelf-life across perishable food
products through multimodal data, spectroscopy, imaging, and smart
labels. CNN-based image classifiers and regression models are showing
promise for assessing microbial spoilage and texture degradation in
meats, mushrooms, and fruits. However, many systems were trained and
validated under controlled conditions and with limited, homogeneous
sample sizes. Real-world variability, including supply chains, differ-
ences in packaging materials, and noise from sensors, is often unex-
plored. In addition, although both smartphone-based and low-cost
freshness indicators show considerable promise, they will still require
additional testing for long-term durability and scalability in operational
field conditions. Going forward, to facilitate industrial use, the next
generation of systems should strive for cross-platform compatibility,
real-time inference capabilities, and low calibration requirements. This
would enable easier incorporation into cold chains or in-store
environments.

5.3. Spoilage detection in ready-to-eat (RTE) meals through AI-ML
models

The increasing demand for Ready-to-Eat (RTE) meals, often rich in
nutrients and requiring minimal preparation, has led to a growing
concern over their spoilage potential, driven by short shelf life and rapid
microbial deterioration. In response, Al and ML-based solutions are
transforming how spoilage in RTE meals is detected and managed.

One study investigated RTE pineapple spoilage using a combination
of FTIR, fluorescence, and visible spectroscopy along with multispectral
imaging, as shown in Fig. 5 (A). The goal was to predict microbial
quality and sensory degradation (odor, texture). PLSR and SVM models
trained on the combined dataset achieved RMSE as low as 0.63 log CFU/
g. In particular, FLUO sensor data combined with PLS-DA classification
reached >85 % accuracy in odor prediction. Unlike microbial plating,
this approach enabled real-time, non-destructive spoilage monitoring
with high sensitivity (Manthou et al., 2020). Building on this concept,
another study employed Selected-Ion Flow-Tube Mass Spectrometry to
capture volatile organic compounds (VOCs) as markers of spoilage in
fresh pork. From 37 VOCs, spoilage indicators like ethanol, benzalde-
hyde, and 3-methyl-1-butanol were extracted. Using ensemble models
including ANN and SVR, the system could predict microbial quality
across storage durations. The ANN-based bagging ensemble out-
performed others, especially when microbial load exceeded safety
thresholds (6 log CFU/g). Compared to GC-MS or culture-based tech-
niques, this volatolomic-AI hybrid offered high-throughput, real-time
evaluation with no reagents or sample prep (L. Chen et al., 2024).
Further emphasizing low-cost, field-ready solutions, researchers devel-
oped an Arduino-based e-nose system to assess spoilage in stuffed
mussels, a high-risk seafood RTE item. The system incorporated gas
sensors (MQ3, MQ135, MQ9) and used image-based CNNs such as
ResNet-50 and SqueezeNet to classify spoilage levels, as shown in Fig. 5
(B). The model successfully identified spoilage onset by day three of
storage, offering a portable, open-source solution that can empower
small-scale vendors or regulatory inspectors (Yavuzer et al., 2024).
Lastly, a study on leafy RTE vegetables like baby spinach and rocket
utilized FTIR, VIS, and MSI in conjunction with PLSR and SVR models to
model microbial degradation. The study highlighted that sensor-model
pairings must be optimized per vegetable type, reinforcing the need
for product-specific calibration. This case emphasized the importance of
tailored Al pipelines for different RTE foods to maintain precision and
reduce food waste (Manthou et al., 2022).
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Overall, Al-based spoilage indicator technology in RTE meals shows
great promise due to the high-risk, short-shelf-life nature of these
products. The reviewed literature utilizes a variety of approaches to
measuring spoilage and understanding microbial kinetics, for example:
vibrational spectroscopy, volatolomics, image-based learning, and e-
nose systems, coupled with ML models such as SVR, ANN, or ensemble
classifiers. Although these technologies generally report high accuracy,
scalability and use in field applications is severely limited. Sample sizes
are often small, and datasets rarely take into account the cultural in-
fluences on regional cuisine, packaging technologies, or ingredient
configurations. Additionally, most of the deployments remain pro-
totypes with little acceptance in commercial RTE production environ-
ments, despite some authors distributing research to explore portable
systems (e.g., Arduino-based e-noses) or microcontroller-based pro-
totypes. Future solutions should focus on the development of stan-
dardized protocols, real-time monitoring of quality, and implementation
of edge computing technologies. Co-design, with a combination of ac-
ademic researchers and food industry stakeholders, will be critical for
innovative solutions to coincide with relevant regulatory adoption. A
comprehensive comparison of Al/ML-based food adulteration detection

10

studies across coffee, milk, edible oils, honey, and turmeric was
compiled (see Table 3). This unified dataset highlights diverse models
such as SVM, CNN, RF, GA-PLS, and Transfer Learning integrated with
various spectral techniques like Raman, FTIR, Vis-NIR, and MSI, show-
casing high-performance metrics across multiple food matrices.

6. Challenges and possible solutions

Despite the remarkable potential of Al and machine learning in food
spoilage detection, especially for ready-to-eat meals and perishable
produce, several real-world challenges persist. These challenges are not
merely technical; they reflect deep-rooted infrastructural, environ-
mental, and human-system interactions that must be understood and
addressed for Al to truly scale in food safety.

6.1. Data availability and quality

One of the most foundational challenges lies in the availability and
reliability of data. Al models thrive on large volumes of diverse, high-
quality, and labeled datasets. But in the case of food spoilage, such
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Table 3

AI-ML approaches in food adulteration detection.
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Ref No Food Analytical Al Model Performance Metrics Advantages over Conventional Systems
Type Technique
Lee and Rianto (2024) Coffee E-nose DBSCAN Detected adulteration via Non-invasive, does not require labeled
aroma profiles data or expert supervision
Pradana-Lépez et al. (2021) Coffee Image Analysis CNN + ResNet34 <1 % classification error No pre-treatment required, highly
accurate and fast
Sagita et al. (2025) Coffee Spectroscopy LDA, ANN, RF, SVM 100 % species, 91.7 % origin Affordable, rapid, and portable
solution
Ntnez et al. (2021) Coffee HPLC-UV-FLD partial least squares regression 94.4 % classification, 2.9-3.2%  Robust fingerprinting without target
prediction error compounds
Ruttanadech et al. (2023) Coffee Spectroscopy Tree, SVM, KNN, QDA, LDA, NB  Tree: 97.5 % accuracy Non-destructive, early mold detection
Pinheiro Claro Gomes et al. Coffee Fluorescence SVM, RF, XGBoost, CatBoost SVM: 96 % accuracy Real-time, non-destructive, high
(2022) Imaging precision
Mohammadi et al. (2024) Tea UV-Vis PLS-LDA, PLS-SVM LDA: 98 %, SVM: 94 % Low-cost, simple, no extensive
pretreatment
Ageel et al. (2025) Milk HSI LDA, SVM, Logistic Regression, Validation Accuracy: 100 % Non-destructive, high-precision
Decision Tree detection for multiple adulterants
K. Goyal et al. (2024) Milk IoT Sensors Ensemble (XAI + SHAP), RF, Accuracy: 96 % Portable, real-time, explainable Al for
LightGBM, Extra Trees safety assurance
Aqeel, Sohaib, Igbal, and Ullahd ~ Milk HSI CNN, ANN, LSTM, GRU CNN: 97 %, high scores across High precision, deep spectral learning
(2024) metrics
Colak et al. (2025) Milk FTIR Ensemble Bagged Trees, SIMCA,  Accuracy: 90.38 % Cost-effective, less preprocessing,
DD-SIMCA highly accurate
Darvishi et al. (2025) Milk E-nose CA, DA, SVM, QDA QDA: 99.5 %, MDA: 98.5 % Non-invasive, low-cost, high-precision
sensory detection
Lanjewar, Parab, and Kamat Milk NIR KNN, RF, PCA KNN: R? = 0.999, RF: 100 % Compact, fast, field-useable system
(2024)
Yao et al. (2023) Milk FT-MIR LDA, Neural Network LDA: 100 %, NN limit: 3.27 g/ Fast, sensitive, and quantitative
100g spectral detection
Ratnasekhar et al. (2025) Oils FT-NIR FT-NIR + ML Accuracy >0.98, Sensitivity Non-destructive, solvent-free, rapid
>98 % fingerprinting
Ageel, Sohaib, Igbal, Rehman, Oils HSI LDA, SVM, RF, DT, KNN, NB, LR Validation Accuracy: 100 % Non-destructive, multi-class
and Rustam (2024) (LDA) classification
Bavali et al. (2025) Oils LIF SVM, 1D-CNN, XGBoost SVM: 99.06 %, LOD: 0.0288 % Trace-level detection, portable setup
Zhao et al. (2022) Oils Raman 9 ML models + PCA 96.7 % classification, R% = Fast, solvent-free, suitable for high-
0.984 throughput
Lim et al. (2020) Qils Fatty Acid End-to-end DL, unsupervised + Error <5.4 % (90th), <1.8 % Handles complex mixtures,
Profiling supervised ML (median) generalizable, real-time, updatable
Aghili et al. (2022) Oils E-nose and GC- ANN, SVM, LDA, QDA, PCA Detected a 25 % fraud level Rapid, portable, low-cost, odor-based
MS profiling
C. H. Lu et al. (2023) Oils Pigment Analysis =~ SVM Train: 100 %, Test: 94.44 % Pigment-based authenticity check,
minimal prep
Windarsih et al. (2024) Oils FT-IR SVM, ANN, LR, kNN, Gradient SVM: R? = 0.993, RMSE = Sensitive, halal-focused, easy IR-
Boosting 2.719 % readout
Lanjewar, Panchbhai, and Patle ~ Honey HSI Stacking Generalization (SG), R? = 0.999, RMSE = 0.493 ml Non-invasive, high-accuracy multi-
(2024) PCA, SVM, kNN class classification
Shehata et al. (2024) Honey Raman SORS + PLS-DA, RF, XGBoost RF: <3.5 % misclassification Non-invasive, through-container
sensing
Razavi and Kenari (2023) Honey UV-Vis SVR, Partial Least Squares R? = 0.98, RMSE = 0.97 Fast, low-cost, non-destructive
Regression
Hu et al. (2022) Honey Raman SVM, CNN, PNN CNN: 99.75 %, SVM/PNN: 100  High accuracy, no preprocessing
%
Phillips and Abdulla (2023) Honey HSI Binary + multi-class >95 % accuracy (binary & Dataset made public, spatial info +
multi-class) spectrum
Boateng et al. (2022) Honey FTIR-HATR GBDA, SVMDA, GBR Class: 0.988-0.981, R = 1.000  Feature selection impact studied, low
RMSE
Calle et al. (2023) Honey Vis-NIR SVM, RF, SVR 100 % classification, R? = Non-destructive, botanical origin also
0.991 detected
Mitra et al. (2023) Honey RSM NN, RF Correct prediction of simulated ~ Low-cost, fast analysis, real-world
adulteration validation
X. Wu et al. (2022) Honey Raman CNN, PLS CNN >97 %, PLS R® > 0.98 Better than chemometrics; high
generalization
Brar et al. (2024) Honey Video 2D-CNN Accuracy = 0.94, Sensitivity = No sensors/spectrometers needed, high
0.99 scalability
Teklemariam (2024) Spices Raman + FT-IR 1D-CNN, PCA, etc. 1D-CNN accuracy highest Minimal preprocessing, handles
nonlinear patterns, high accuracy
Lanjewar, Asolkar, et al. (2024) Spices MSI + Vis-NIR RFR, RFC, DenseNet201 R? = 0.999, RMSE = 0.391, F1 Combined MSI and spectroscopy for

=96 %

robust detection

datasets are often scarce or fragmented. Collecting data that links mi-
crobial spoilage levels (like total viable counts), environmental param-
eters (temperature, humidity), and sensor outputs (e.g., FTIR, electronic
nose, gas chromatography) requires access to expensive laboratory
infrastructure and controlled conditions, resources not readily available
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across all food sectors. Additionally, existing datasets often suffer from
inconsistencies in labeling, missing metadata, or low sample diversity,
which reduces model robustness. Due to either the absence of clean and
comprehensive datasets, Al systems can perform well in controlled ex-
periments and poorly with real-world variance. Poor data quality can
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contribute to missed classifications, diminished trust in predictions, and
increased instances of overfitting. The solution to this problem could be
with the use of federated learning, which enables institutions in distinct
regions to cooperate on training models without having to share sensi-
tive data. Federated learning approaches have shown a reduction of up
to 47 % in privacy leakage compared to traditional centralized training,
enabling institutions to collaboratively train models without sharing
raw data. Synthetic data generation using tools like Generative Adver-
sarial Networks (GANs) can also expand the data pool. GANs have
shown a 30-60 % improvement in model accuracy when real-world data
is sparse or unbalanced. Most importantly, establishing collaborative,
open-access data repositories backed by government or research con-
sortia can create a standardized baseline for model training and
benchmarking (Gbashi & Njobeh, 2024; Rahman et al., 2024).

6.2. Generalizability across geographies and food types

A further important barrier is that models trained for one geography
or food product typically do not generalize well to another. This occurs
as spoilage signatures, such as microbial profiles or volatile organic
compounds, can vary significantly by many factors, including climate
zone, industry supply chain practices, and packaging types. Recent
evaluations show that ML models trained in temperate environments
experienced a 15-30 % drop in classification accuracy when tested in
tropical or low-resource settings. Such a lack of generalizability creates
barriers to scale and introduces operational risk (Jadhav et al., 2024, pp.
4989-4995). A promising solution is the use of domain adaptation
techniques in ML that help models adjust to new data distributions.
Additionally, building modular Al architectures that allow partial
retraining or localization using small new datasets can enhance flexi-
bility. Developing regionally tuned multi-task learning frameworks that
share low-level features across foods while learning high-level differ-
ences specific to geography or commodity can also offer a more scalable
path forward (Castano-Duque et al., 2022; Q. Tang et al., 2023).

6.3. Interpretability of complex ML models

Although deep learning models (such as CNNs) or ensemble methods
(like RF) provide better performance in spoilage detection tasks, they
typically operate as “black boxes.” In other words, they predict spoilage
correctly without providing a transparent explanation for classifying a
food sample as spoiled. This lack of interpretability poses a serious
barrier in food safety applications, where decisions must be explainable
to regulators, auditors, and even consumers. When a prediction cannot
be explained, especially a false positive that leads to product rejection or
recall, it becomes difficult to build trust in Al-driven decisions. To
improve transparency, explainable AI (XAI) frameworks such as SHAP
and LIME should be integrated. For instance, SHAP-based interpret-
ability added to ML pipelines in recent food adulteration studies
improved user trust by approximately 28 %, as reported in user feedback
surveys. Reporting uncertainty estimates and confidence scores along-
side predictions further enhances decision-making and reduces the risk
of false positives (ElShawi et al., 2021; Gambo et al., 2024; Oldroyd
et al., 2021).

6.4. Cost and infrastructure constraints in rural or developing regions

Finally, one of the most practical limitations is the high cost and
infrastructural requirements for deploying Al solutions in rural or
resource-limited settings. Advanced models often rely on high-
resolution imaging systems, cloud computing for real-time analytics,
and stable power and internet, conditions that may not be met in many
parts of the world, particularly in small-scale farms or food markets. This
severely limits the democratization of Al-driven food safety. The
consequence is a growing digital divide where only industrial players
can benefit from predictive food quality systems, while smallholders and
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informal vendors continue to rely on manual inspection or unverified
shelf-life labels. To bridge this gap, lightweight Al models deployed on
edge devices (e.g., smartphones, Raspberry Pi, or Arduino-based sys-
tems) have been shown to reduce costs by over 80 % while maintaining
above 92 % accuracy for tasks such as spoilage detection in stuffed
mussels. Encouraging public-private partnerships to subsidize these
tools, along with training programs for local vendors, can enable
widespread deployment. Integration of Al with existing rural supply
chain programs (e.g., via cooperatives or government food safety mis-
sions) will be key to achieving scale and equity (Yavuzer et al., 2024;
Lins et al., 2021; C. Wu et al., 2023).

6.5. Regulatory and standardization challenges

A considerable hurdle faced in Al implementation for food safety is
compliance with existing regulatory requirements. Al-based decisions
must conform to food safety regulations set forth by regulatory organi-
zations such as EFSA and FDA. Currently, the absence of standardized
validation protocols for Al models across jurisdictions creates uncer-
tainty and legal barriers. The necessity for global cooperation to stan-
dardize testing protocols, performance expectations, and audit processes
cannot be overstated. This would facilitate the adoption of Al and foster
trust in all actors in the food system (Abid et al., 2024; Dhal & Kar,
2025b).

6.6. Human-system integration and capacity building

While there are technological obstacles, we still need to address
human factors in more depth. Even with the technologies available, we
are still left with the training of the intended end-users/first responders
(food handlers, inspectors, quality control personnel, etc.) in how to use
the technology, which must be done within the context of already
existing inspection systems. Recent deployments of Al-powered food
safety systems have demonstrated that capacity-building initiatives can
increase the likelihood of making accurate interpretations from Al out-
puts by 35-40 %, which can increase compliance and enable fewer recall
events [97]. Encouragement of training programs should necessarily
include training on the operation of Al tools, along with interpreting
confidence scores and being able to circumvent these outputs, at times,
doing so is vital. Embedding these educational programs within national
food safety missions can ensure long-term success. Together, these
multifaceted challenges and their corresponding solutions lay the
groundwork for scalable, explainable, and human-aligned Al systems in
global food safety applications (Nazaretsky et al., 2022).

7. Conclusion and future direction

Al and ML are moving from futuristic tools to practical tools. They
are now changing the ways we detect and prevent food adulteration,
spoilage, and contamination. Al-enabled systems have shown the po-
tential to provide real-time, noninvasive, and scalable solutions to food
safety problems, whether it be milk, spices, meat, or prepared meals.
However, as emphasized in Section 6, several core challenges must be
addressed to fully realize the potential of Al in food safety:

e Data availability and quality: Quality and availability of data:
Future research should focus on developing high-quality, open-ac-
cess, and representative datasets from different geographic regions.
Initiatives could include frameworks for collaborative data-sharing
using federated learning and synthetic data production methods.

e Model generalizability across regions and food types: The crea-
tion of adaptive and modular Al systems will be beneficial in sup-
porting fine-tuning with local datasets of limited sizes. Research into
the development of multi-task learning and domain adaptation ap-
proaches will increase transferability.
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e Interpretability and trust: Incorporation of explainable Al tech-
niques (ex: SHAP, LIME) into prediction pipelines and demonstrating
their value through user-centered research may help to improve trust
from regulators and stakeholders. In the future, it would be useful for
tools to provide uncertainty estimates to enable decision-making.
Infrastructure and cost constraints: Affordable edge-Al options
suitable for rural or under-resourced areas deserve study and pro-
totyping. Al-enabled food safety should be made accessible to
anyone via the combination of featherweight models and inexpen-
sive sensors, mobile applications, or IoT devices.

Moreover, adopting long-term favourable implementation of these
solutions will require regulatory coordination and human-system
interface integration, as mentioned previously. Future work will need
to work with regulatory agencies such as EFSA and the FDA to develop
standards for Al validation. In addition to these, several emerging trends
hold strong potential for future research and real-world deployment:

o Al for Pathogen Detection: Al is developing rapidly in the use of
biosensors and imaging for the detection of microbial pathogens in
food. ML models can facilitate the detection/classification of bacte-
rial colonies and predict the occurrence of pathogenic organisms
through time series data from the sensor or predicted by measured
spectroscopic features.

Zero-Shot and Few-Shot Learning: Zero-Shot and Few-Shot

Learning: supervised models require large, labeled datasets; how-

ever, zero-shot and few-shot learning methods can generalize to new

food types or contaminants with little beforehand data. These
methods could alleviate the burden of data collection and increase
flexibility in changing environments in food.

e Blockchain + AI for Traceability: Blockchain + Artificial Intelli-
gence (Al) for Traceability: Utilizing blockchain’s immutable ledger
in conjunction with AI’s predictive capabilities would enable end-to-
end traceability and fraud detection in food supply chains. Al could
detect anomalies, substantiate the authenticity of products, and
disclose previously distributed data from the chains found on a
distributed ledger.

By systematically addressing current barriers and exploring these
future directions, Al can become a more trusted, inclusive, and adaptive
technology for safeguarding food systems worldwide. Strategic part-
nerships between academia, regulatory agencies, and industry will be
critical in transforming these innovations into operational food safety
safeguards.

CRediT authorship contribution statement

B.P.: Writing — original draft, Software, A.L.A.: Resources, Project
administration, Methodology, J.N.: Investigation, Formal analysis, Data
curation, P.J.A., K.S.: Conceptualization, Validation, Visualization. M.
B.K., M.B.: Visualization, Supervision, Writing-editing and reviewing.
Availability of data and material

Data will be made available based on a reasonable request.
Funding

This research received no external funding.

Declaration of competing interest

The authors declare no conflict of interest.

13

Trends in Food Science & Technology 163 (2025) 105153
Data availability
Data will be made available on request.

References

Abid, H. M. R., Khan, N., Hussain, A., Anis, Z. B., Nadeem, M., & Khalid, N. (2024).
Quantitative and qualitative approach for accessing and predicting food safety using
various web-based tools. Food Control, 162, Article 110471. https://doi.org/
10.1016/j.foodcont.2024.110471

Agarwal, D., Sweta, & Bachan, P. (2023). Machine learning approach for the
classification of wheat grains. Smart Agricultural Technology, 3, Article 100136.
https://doi.org/10.1016/j.atech.2022.100136

Aghili, N. S., Rasekh, M., Karami, H., Azizi, V., & Gancarz, M. (2022). Detection of fraud
in sesame oil with the help of artificial intelligence combined with chemometrics
methods and chemical compounds characterization by gas chromatography-mass
spectrometry. Lebensmittel-Wissenschaft & Technologie, 167(April), Article 113863.
https://doi.org/10.1016/j.1wt.2022.113863

Alzahrani, M. (2025). Automated tomato defect detection using CNN feature fusion for
enhanced classification. Processes, 13(1). https://doi.org/10.3390/pr13010115

Anagaw, Y. K., Ayenew, W., Limenh, L. W., Geremew, D. T., Worku, M. C.,

Tessema, T. A., Simegn, W., & Mitku, M. L. (2024). Food adulteration: Causes, risks,
and detection techniques—review, 12. SAGE Open Medicine, Article
20503121241250184. https://doi.org/10.1177/20503121241250184

Ageel, M., Sohaib, A., Igbal, M., Rehman, H. U., & Rustam, F. (2024). Hyperspectral
identification of oil adulteration using machine learning techniques. Current Research
in Food Science, 8(May), Article 100773. https://doi.org/10.1016/j.
crfs.2024.100773

Ageel, M., Sohaib, A., Igbal, M., & Ullah, S. S. (2025). Milk adulteration identification
using hyperspectral imaging and machine learning. Journal of Dairy Science, 108(2),
1301-1314. https://doi.org/10.3168/jds.2024-25635

Ageel, M., Sohaib, A., Igbal, M., & Ullahd, S. S. (2024). Hyperspectral identification of
milk adulteration using advance deep learning. IEEE Access, 12(October),
174965-174982. https://doi.org/10.1109/ACCESS.2024.3504334

Bansal, S., Singh, A., Mangal, M., Mangal, A. K., & Kumar, S. (2017). Food adulteration:
Sources, health risks, and detection methods. Critical Reviews in Food Science and
Nutrition, 57(6), 1174-1189. https://doi.org/10.1080/10408398.2014.967834

Bavali, A., Rahmatpanahi, A., & Chegini, R. M. (2025). Quantitative detection of
adulteration in avocado oil using laser-induced fluorescence and machine learning
models. Microchemical Journal, 211(January), Article 113080. https://doi.org/
10.1016/j.microc.2025.113080

Ben Ayed, R., & Hanana, M. (2021). Artificial intelligence to improve the food and
agriculture sector. Journal of Food Quality, 2021. https://doi.org/10.1155/2021/
5584754 (M).

Bhaiyya, M., Panigrahi, D., Rewatkar, P., & Haick, H. (2024). Role of machine learning
assisted biosensors in point-of-care-testing for clinical decisions. ACS Sensors, 9(9),
4495-4519. https://doi.org/10.1021/acssensors.4c01582

Bhaiyya, M. L., Srivastava, S. K., Pattnaik, P. K., & Goel, S. (2023). Closed-bipolar mini
electrochemiluminescence sensor to detect various biomarkers: A machine learning
approach. IEEE Transactions on Instrumentation and Measurement, 72, 1-8. https://
doi.org/10.1109/TIM.2023.3296819

Boateng, A. A., Sumaila, S., Lartey, M., Oppong, M. B., Opuni, K. F. M., & Adutwum, L. A.
(2022). Evaluation of chemometric classification and regression models for the
detection of syrup adulteration in honey. Lebensmittel-Wissenschaft & Technologie,
163(February), Article 113498. https://doi.org/10.1016/j.1wt.2022.113498

Brar, D. S., Aggarwal, A. K., Nanda, V., Kaur, S., Saxena, S., & Gautam, S. (2024).
Detection of sugar syrup adulteration in unifloral honey using deep learning
framework: An effective quality analysis technique. Food and Humanity, 2, Article
100190. https://doi.org/10.1016/j.foohum.2023.11.017. November 2023.

Calle, J. L. P., Punta-Sanchez, I., Gonzalez-de-Peredo, A. V., Ruiz-Rodriguez, A., Ferreiro-
Gonzalez, M., & Palma, M. (2023). Rapid and automated method for detecting and
quantifying adulterations in high-quality honey using Vis-NIRs in combination with
machine learning. Foods, 12(13). https://doi.org/10.3390/foods12132491

Castano-Duque, L., Vaughan, M., Lindsay, J., Barnett, K., & Rajasekaran, K. (2022).
Gradient boosting and bayesian network machine learning models predict aflatoxin
and fumonisin contamination of maize in Illinois — First USA case study. Frontiers in
Microbiology, 13(November), 1-14. https://doi.org/10.3389/fmicb.2022.1039947

Chen, Q. (2024). Early warning monitoring system for fresh food safety based on K-
means clustering algorithm. In Y. Pei, H. S. Ma, Y.-W. Chan, & H.-Y. Jeong (Eds.),
Proceedings of innovative computing 2024, 1 pp. 275-284). Singapore: Springer
Nature.

Chen, L., Kuuliala, L., Somrani, M., Walgraeve, C., Demeestere, K., De Baets, B., &
Devlieghere, F. (2024). Rapid and non-destructive microbial quality prediction of
fresh pork stored under modified atmospheres by using selected-ion flow-tube mass
spectrometry and machine learning. Meat Science, 213, Article 109505. https://doi.
org/10.1016/j.meatsci.2024.109505. December 2023.

Chhetri, K. B. (2024). Applications of artificial intelligence and machine learning in food
quality control and safety assessment. Food Engineering Reviews, 16(1), 1-21. https://
doi.org/10.1007/512393-023-09363-1

Colak, S., Uzunsoy, 1., Narin, A., & Duran, U. (2025). Adulteration detection of cow milk
in Buffalo milk using Fourier-transform infrared spectroscopy and artificial
intelligence-based techniques. Journal of Food Composition and Analysis, 140, Article
107203. https://doi.org/10.1016/j.jfca.2025.107203. February 2024.


https://doi.org/10.1016/j.foodcont.2024.110471
https://doi.org/10.1016/j.foodcont.2024.110471
https://doi.org/10.1016/j.atech.2022.100136
https://doi.org/10.1016/j.lwt.2022.113863
https://doi.org/10.3390/pr13010115
https://doi.org/10.1177/20503121241250184
https://doi.org/10.1016/j.crfs.2024.100773
https://doi.org/10.1016/j.crfs.2024.100773
https://doi.org/10.3168/jds.2024-25635
https://doi.org/10.1109/ACCESS.2024.3504334
https://doi.org/10.1080/10408398.2014.967834
https://doi.org/10.1016/j.microc.2025.113080
https://doi.org/10.1016/j.microc.2025.113080
https://doi.org/10.1155/2021/5584754
https://doi.org/10.1155/2021/5584754
https://doi.org/10.1021/acssensors.4c01582
https://doi.org/10.1109/TIM.2023.3296819
https://doi.org/10.1109/TIM.2023.3296819
https://doi.org/10.1016/j.lwt.2022.113498
https://doi.org/10.1016/j.foohum.2023.11.017
https://doi.org/10.3390/foods12132491
https://doi.org/10.3389/fmicb.2022.1039947
http://refhub.elsevier.com/S0924-2244(25)00289-4/sref18
http://refhub.elsevier.com/S0924-2244(25)00289-4/sref18
http://refhub.elsevier.com/S0924-2244(25)00289-4/sref18
http://refhub.elsevier.com/S0924-2244(25)00289-4/sref18
https://doi.org/10.1016/j.meatsci.2024.109505
https://doi.org/10.1016/j.meatsci.2024.109505
https://doi.org/10.1007/s12393-023-09363-1
https://doi.org/10.1007/s12393-023-09363-1
https://doi.org/10.1016/j.jfca.2025.107203

P. Balakrishnan et al.

Darvishi, P., Mirzaee-Ghaleh, E., Ramedani, Z., Karami, H., & Wilson, A. D. (2025).

A novel approach for identifying melamine adulteration in powdered milk with E-
nose and Al Food and Chemical Toxicology, 202(April), Article 115521. https://doi.
org/10.1016/j.fct.2025.115521

Deshmukh, M. T., Wankhede, P. R., Chakole, N., Kale, P. D., Jadhav, M. R.,

Kulkarni, M. B., & Bhaiyya, M. (2025). Towards intelligent food safety: Machine
learning approaches for aflatoxin detection and risk prediction. Trends in Food
Science & Technology. , Article 105055. https://doi.org/10.1016/].tifs.2025.105055

Dhal, S. B., & Kar, D. (2025a). Leveraging artificial intelligence and advanced food
processing techniques for enhanced food safety, quality, and security: A
comprehensive review. In Discover applied sciences, 7Springer International
Publishing. https://doi.org/10.1007/542452-025-06472-w. Issue 1.

Dhal, S. B., & Kar, D. (2025b). Leveraging artificial intelligence and advanced food
processing techniques for enhanced food safety, quality, and security: A
comprehensive review. Discover Applied Sciences, 7(1), 75. https://doi.org/10.1007/
542452-025-06472-w

Ding, H., Hou, H., Wang, L., Cui, X., Yu, W., & Wilson, D. I. (2025). Application of
convolutional neural networks and recurrent neural networks in food safety. Foods,
14(2). https://doi.org/10.3390/foods14020247

ElShawi, R., Sherif, Y., Al-Mallah, M., & Sakr, S. (2021). Interpretability in healthcare: A
comparative study of local machine learning interpretability techniques.
Computational Intelligence, 37(4), 1633-1650. https://doi.org/10.1111/coin.12410

Ennab, M., & Mcheick, H. (2024). Enhancing interpretability and accuracy of Al models
in healthcare: A comprehensive review on challenges and future directions. Frontiers
in Robotics and Al 11. https://doi.org/10.3389/frobt.2024.1444763

Fashi, M., Naderloo, L., & Javadikia, H. (2020). Pomegranate grading based on pH using
image processing and artificial intelligence. Journal of Food Measurement and
Characterization, 14(6), 3112-3121. https://doi.org/10.1007/s11694-020-00554-6

Fengou, L. C., Mporas, 1., Spyrelli, E., Lianou, A., & Nychas, G. J. (2020). Estimation of
the microbiological quality of meat using rapid and non-invasive spectroscopic
sensors. In IEEE access, 8 pp. 106614-106628). https://doi.org/10.1109/
ACCESS.2020.3000690. ii.

Gambo, 1., Massenon, R., Lin, C.-C., Ogundokun, R. O., Agarwal, S., & Pak, W. (2024).
Enhancing user trust and interpretability in Al-Driven feature request detection for
Mobile app reviews: An explainable approach. IEEE Access, 12, 114023-114045.
https://doi.org/10.1109/ACCESS.2024.3443527

Gbashi, S., & Njobeh, P. B. (2024). Enhancing food integrity through artificial
intelligence and machine learning: A comprehensive review. Applied Sciences, 14(8).
https://doi.org/10.3390/app14083421

Geng, Z., Liang, L., Han, Y., Tao, G., & Chu, C. (2022). Risk early warning of food safety
using novel long short-term memory neural network integrating sum product based
analytic hierarchy process. British Food Journal, 124(3), 898-914. https://doi.org/
10.1108/BFJ-04-2021-0367

Goyal, K., Kumar, P., & Verma, K. (2024). XAl-empowered IoT multi-sensor system for
real-time milk adulteration detection. Food Control, 164, Article 110495. https://doi.
org/10.1016/j.foodcont.2024.110495. November 2023.

Goyal, R., Singha, P., & Singh, S. K. (2025). Machine learning-assisted Fourier transform
infrared spectroscopy to predict adulteration in coriander powder. Food Chemistry,
477, Article 143502. https://doi.org/10.1016/j.foodchem.2025.143502. May 2024.

Haldorai, A., Ramu, A., & Suriya, M. (2020). Organization internet of things (IoTs):
Supervised, unsupervised, and reinforcement learning. In A. Haldorai, A. Ramu, &
S. A. R. Khan (Eds.), Business intelligence for enterprise internet of things (pp. 27-53).
Springer International Publishing. https://doi.org/10.1007/978-3-030-44407-5_2.

Hoque, M., & Mondal, S. (2019). Chapter 5 - Safety of milk and dairy products. In
R. L. Singh, & S. Mondal (Eds.), Food safety and human health (pp. 127-143).
Academic Press. https://doi.org/10.1016/B978-0-12-816333-7.00005-9.

Hu, S., Li, H., Chen, C., Chen, C., Zhao, D., Dong, B., Lv, X., Zhang, K., & Xie, Y. (2022).
Raman spectroscopy combined with machine learning algorithms to detect
adulterated Suichang native honey. Scientific Reports, 12(1), 1-7. https://doi.org/
10.1038/541598-022-07222-3

Jadhav, A., Sawesi, S., & Rashrash, B. (2024). Bias and generalizability challenges in
machine learning models for leptospirosis. 2024 IEEE international conference on big
data (BigData) (pp. 4989-4995). https://doi.org/10.1109/
BigData62323.2024.10825588

Javanmardi, S., & Ashtiani, S. H. M. (2025). Al-driven deep learning framework for shelf
life prediction of edible mushrooms. Postharvest Biology and Technology, 222, Article
113396. https://doi.org/10.1016/j.postharvbio.2025.113396. September 2024.

Kahar, K., Dhekekar, R., Bhaiyya, M., Srivastava, S. K., Rewatkar, P., Balpande, S., &
Goel, S. (2023). Optimization of MEMS-based energy scavengers and output
prediction with machine learning and synthetic data approach. Sensors and Actuators
A: Physical, 358, Article 114429. https://doi.org/10.1016/j.sna.2023.114429

Kakani, V., Nguyen, V. H., Kumar, B. P., Kim, H., & Pasupuleti, V. R. (2020). A critical
review on computer vision and artificial intelligence in food industry. Journal of
Agriculture and Food Research, 2, Article 100033. https://doi.org/10.1016/j.
jafr.2020.100033. November 2019.

Karanth, S., Benefo, E. O., Patra, D., & Pradhan, A. K. (2023). Importance of artificial
intelligence in evaluating climate change and food safety risk. Journal of Agriculture
and Food Research, 11, Article 100485. https://doi.org/10.1016/j.jafr.2022.100485.
November 2022.

Kish, A. (2018). Machine learning: A review of methods and applications. Researchgate.
Net, 10(7). https://www.researchgate.net/profile/Adam-Kish-2/publication/327
645425_Machine Learning A_Review_of Methods_and_Applications/links/5b9b679
a299bf13e602d5bcd/Machine-Learning-A-Review-of-Methods-and-Applications.
pdf.

14

Trends in Food Science & Technology 163 (2025) 105153

Ko, K., Jang, L., Choi, J. H., Lim, J. H., & Lee, D. U. (2021). Stochastic decision fusion of
convolutional neural networks for tomato ripeness detection in agricultural sorting
systems. Sensors, 21(3). https://doi.org/10.3390/521030917

Kumar, I., Rawat, J., Mohd, N., & Husain, S. (2021). Opportunities of artificial
intelligence and machine learning in the food industry. Journal of Food Quality, 2021
(1), Article 4535567. https://doi.org/10.1155/2021/4535567

Lanjewar, M. G., Asolkar, S., Parab, J. S., & Morajkar, P. P. (2024). Detecting starch-
adulterated turmeric using Vis-NIR spectroscopy and multispectral imaging with
machine learning. Journal of Food Composition and Analysis, 136(June), Article
106700. https://doi.org/10.1016/j.jfca.2024.106700

Lanjewar, M. G., Panchbhai, K. G., & Patle, L. B. (2024). Sugar detection in adulterated
honey using hyper-spectral imaging with stacking generalization method. Food
Chemistry, 450(April), Article 139322, https://doi.org/10.1016/j.
foodchem.2024.139322

Lanjewar, M. G., Parab, J. S., & Kamat, R. K. (2024). Machine learning based technique
to predict the water adulterant in milk using portable near infrared spectroscopy.
Journal of Food Composition and Analysis, 131(February), Article 106270. https://doi.
org/10.1016/j.jfca.2024.106270

Lee, C. H., & Rianto, B. (2024). An Al-powered e-nose system using a density-based
clustering method for identifying adulteration in specialty coffees. Microchemical
Journal, 197, Article 109844. https://doi.org/10.1016/j.microc.2023.109844.
December 2023.

Li, S., Tian, Y., Jiang, P., Lin, Y., Liu, X., & Yang, H. (2021). Recent advances in the
application of metabolomics for food safety control and food quality analyses.
Critical Reviews in Food Science and Nutrition, 61(9), 1448-1469. https://doi.org/
10.1080/10408398.2020.1761287

Liang, Q., Liu, Y., Zhang, H., Che, J., Xia, Y., & Li, S. (2024). Non-destructive detection of
water adulteration level in fresh milk based on combination of dielectric spectrum
technology and machine learning method. Journal of Food Composition and Analysis,
136, Article 106807. https://doi.org/10.1016/j.jfca.2024.106807

Liang, Q., Xia, Y., Che, J., Liu, Y., Zhang, H., Guo, J., Xu, Q., & Xue, H. (2025). Detection
of water adulteration levels in milk using near-infrared spectroscopy combined with
chemometrics. Journal of Dairy Science. https://doi.org/10.3168/jds.2025-26631

Lim, K., Pan, K., Yu, Z., & Xiao, R. H. (2020). Pattern recognition based on machine
learning identifies oil adulteration and edible oil mixtures. Nature Communications,
11(1). https://doi.org/10.1038/541467-020-19137-6

Lins, S., Pandl, K. D., Teigeler, H., Thiebes, S., Bayer, C., & Sunyaev, A. (2021). Artificial
intelligence as a service. Business & Information Systems Engineering, 63(4), 441-456.
https://doi.org/10.1007/512599-021-00708-w

Liu, Z., Wang, S., Zhang, Y., Feng, Y., Liu, J., & Zhu, H. (2023). Artificial intelligence in
food safety: A decade review and bibliometric analysis. Foods, 12(6). https://doi.
org/10.3390/foods12061242

Ly, C. H,, Li, B. Q., Jing, Q., Pei, D., & Huang, X. Y. (2023). A classification and
identification model of extra virgin olive oil adulterated with other edible oils based
on pigment compositions and support vector machine. Food Chemistry, 420
(January), Article 136161. https://doi.org/10.1016/j.foodchem.2023.136161

Lu, H., Song, A., Li, M., Yao, X., Cai, Y., Dong, L., Kang, D., & Liu, Y. (2025). Evaluation of
the freshness (TVB-N) of pork patty during storage based on PLS-DA, SVM and BP-
ANN models. Food Control, 171, Article 111121. https://doi.org/10.1016/j.
foodcont.2024.111121. October 2024.

Machado Nardi, V. A., Auler, D. P., & Teixeira, R. (2020). Food safety in global supply
chains: A literature review. Journal of Food Science, 85(4), 883-891. https://doi.org/
10.1111/1750-3841.14999

Manekar, K., Bhaiyya, M. L., Hasamnis, M. A., & Kulkarni, M. B. (2025). Intelligent
microfluidics for plasma separation: Integrating computational fluid dynamics and
machine learning for optimized microchannel design. Biosensors, 15(2). https://doi.
org/10.3390/bios15020094

Manthou, E., Karnavas, A., Fengou, L. C., Bakali, A., Lianou, A., Tsakanikas, P., &
Nychas, G. J. E. (2022). Spectroscopy and imaging technologies coupled with
machine learning for the assessment of the microbiological spoilage associated to
ready-to-eat leafy vegetables. International Journal of Food Microbiology, 361, Article
109458. https://doi.org/10.1016/j.ijfoodmicro.2021.109458. January 2021.

Manthou, E., Lago, S. L., Dagres, E., Lianou, A., Tsakanikas, P., Panagou, E. Z.,
Anastasiadi, M., Mohareb, F., & Nychas, G. J. E. (2020). Application of spectroscopic
and multispectral imaging technologies on the assessment of ready-to-eat pineapple
quality: A performance evaluation study of machine learning models generated from
two commercial data analytics tools. Computers and Electronics in Agriculture, 175
(May), Article 105529. https://doi.org/10.1016/j.compag.2020.105529

Mitra, P. K., Karmakar, R., Nandi, R., & Gupta, S. (2023). Low-cost rapid workflow for
honey adulteration detection by UV-Vis spectroscopy in combination with factorial
design, response surface methodology and supervised machine learning classifiers.
Bioresource Technology Reports, 21(January), Article 101327. https://doi.org/
10.1016/j.biteb.2022.101327

Mohammadi, N., Esteki, M., & Simal-Gandara, J. (2024). Machine learning for
authentication of black tea from narrow-geographic origins: Combination of PCA
and PLS with LDA and SVM classifiers. Lebensmittel-Wissenschaft & Technologie, 203
(May), Article 116401. https://doi.org/10.1016/j.1wt.2024.116401

Morales, E. F., & Escalante, H. J. (2022). Chapter 6 - A brief introduction to supervised,
unsupervised, and reinforcement learning. In A. A. Torres-Garcia, C. A. Reyes-
Garcia, L. Villasenor-Pineda, & O. Mendoza-Montoya (Eds.), Biosignal processing and
classification using computational learning and intelligence (pp. 111-129). Academic
Press. https://doi.org/10.1016/B978-0-12-820125-1.00017-8.

Mu, W., Kleter, G. A., Bouzembrak, Y., Dupouy, E., Frewer, L. J., Radwan Al
Natour, F. N., & Marvin, H. J. P. (2024). Making food systems more resilient to food
safety risks by including artificial intelligence, big data, and internet of things into
food safety early warning and emerging risk identification tools. Comprehensive


https://doi.org/10.1016/j.fct.2025.115521
https://doi.org/10.1016/j.fct.2025.115521
https://doi.org/10.1016/j.tifs.2025.105055
https://doi.org/10.1007/s42452-025-06472-w
https://doi.org/10.1007/s42452-025-06472-w
https://doi.org/10.1007/s42452-025-06472-w
https://doi.org/10.3390/foods14020247
https://doi.org/10.1111/coin.12410
https://doi.org/10.3389/frobt.2024.1444763
https://doi.org/10.1007/s11694-020-00554-6
https://doi.org/10.1109/ACCESS.2020.3000690
https://doi.org/10.1109/ACCESS.2020.3000690
https://doi.org/10.1109/ACCESS.2024.3443527
https://doi.org/10.3390/app14083421
https://doi.org/10.1108/BFJ-04-2021-0367
https://doi.org/10.1108/BFJ-04-2021-0367
https://doi.org/10.1016/j.foodcont.2024.110495
https://doi.org/10.1016/j.foodcont.2024.110495
https://doi.org/10.1016/j.foodchem.2025.143502
https://doi.org/10.1007/978-3-030-44407-5_2
https://doi.org/10.1016/B978-0-12-816333-7.00005-9
https://doi.org/10.1038/s41598-022-07222-3
https://doi.org/10.1038/s41598-022-07222-3
https://doi.org/10.1109/BigData62323.2024.10825588
https://doi.org/10.1109/BigData62323.2024.10825588
https://doi.org/10.1016/j.postharvbio.2025.113396
https://doi.org/10.1016/j.sna.2023.114429
https://doi.org/10.1016/j.jafr.2020.100033
https://doi.org/10.1016/j.jafr.2020.100033
https://doi.org/10.1016/j.jafr.2022.100485
https://www.researchgate.net/profile/Adam-Kish-2/publication/327645425_Machine_Learning_A_Review_of_Methods_and_Applications/links/5b9b679a299bf13e602d5bcd/Machine-Learning-A-Review-of-Methods-and-Applications.pdf
https://www.researchgate.net/profile/Adam-Kish-2/publication/327645425_Machine_Learning_A_Review_of_Methods_and_Applications/links/5b9b679a299bf13e602d5bcd/Machine-Learning-A-Review-of-Methods-and-Applications.pdf
https://www.researchgate.net/profile/Adam-Kish-2/publication/327645425_Machine_Learning_A_Review_of_Methods_and_Applications/links/5b9b679a299bf13e602d5bcd/Machine-Learning-A-Review-of-Methods-and-Applications.pdf
https://www.researchgate.net/profile/Adam-Kish-2/publication/327645425_Machine_Learning_A_Review_of_Methods_and_Applications/links/5b9b679a299bf13e602d5bcd/Machine-Learning-A-Review-of-Methods-and-Applications.pdf
https://doi.org/10.3390/s21030917
https://doi.org/10.1155/2021/4535567
https://doi.org/10.1016/j.jfca.2024.106700
https://doi.org/10.1016/j.foodchem.2024.139322
https://doi.org/10.1016/j.foodchem.2024.139322
https://doi.org/10.1016/j.jfca.2024.106270
https://doi.org/10.1016/j.jfca.2024.106270
https://doi.org/10.1016/j.microc.2023.109844
https://doi.org/10.1080/10408398.2020.1761287
https://doi.org/10.1080/10408398.2020.1761287
https://doi.org/10.1016/j.jfca.2024.106807
https://doi.org/10.3168/jds.2025-26631
https://doi.org/10.1038/s41467-020-19137-6
https://doi.org/10.1007/s12599-021-00708-w
https://doi.org/10.3390/foods12061242
https://doi.org/10.3390/foods12061242
https://doi.org/10.1016/j.foodchem.2023.136161
https://doi.org/10.1016/j.foodcont.2024.111121
https://doi.org/10.1016/j.foodcont.2024.111121
https://doi.org/10.1111/1750-3841.14999
https://doi.org/10.1111/1750-3841.14999
https://doi.org/10.3390/bios15020094
https://doi.org/10.3390/bios15020094
https://doi.org/10.1016/j.ijfoodmicro.2021.109458
https://doi.org/10.1016/j.compag.2020.105529
https://doi.org/10.1016/j.biteb.2022.101327
https://doi.org/10.1016/j.biteb.2022.101327
https://doi.org/10.1016/j.lwt.2024.116401
https://doi.org/10.1016/B978-0-12-820125-1.00017-8

P. Balakrishnan et al.

Reviews in Food Science and Food Safety, 23(1), Article e13296. https://doi.org/
10.1111/1541-4337.13296

Nazaretsky, T., Ariely, M., Cukurova, M., & Alexandron, G. (2022). Teachers’ trust in Al-
powered educational technology and a professional development program to
improve it. British Journal of Educational Technology, 53(4), 914-931. https://doi.
org/10.1111/bjet.13232

Ni, X., Jiang, Y., Zhang, Y., Zhou, Y., Zhao, Y., Guo, F., & Wang, H. (2023). Identification
of liquid milk adulteration using Raman spectroscopy combined with lactose
indexed screening and support vector machine. International Dairy Journal, 146,
Article 105751. https://doi.org/10.1016/j.idairyj.2023.105751

Nunez, N., Pons, J., Saurina, J., & Ntnez, O. (2021). Non-targeted high-performance
liquid chromatography with ultraviolet and fluorescence detection fingerprinting for
the classification, authentication, and fraud quantitation of instant coffee and
chicory by multivariate chemometric methods. Lebensmittel-Wissenschaft &
Technologie, 147. https://doi.org/10.1016/j.lwt.2021.111646. December 2020.

Oldroyd, R. A., Morris, M. A., & Birkin, M. (2021). Predicting food safety compliance for
informed food outlet inspections: A machine learning approach. International Journal
of Environmental Research and Public Health, 18(23). https://doi.org/10.3390/
ijerph182312635

Phillips, T., & Abdulla, W. (2023). A new honey adulteration detection approach using
hyperspectral imaging and machine learning. European Food Research and
Technology, 249(2), 259-272. https://doi.org/10.1007/s00217-022-04113-9

Pinheiro Claro Gomes, W., Gongalves, L., Barboza da Silva, C., & Melchert, W. R. (2022).
Application of multispectral imaging combined with machine learning models to
discriminate special and traditional green coffee. Computers and Electronics in
Agriculture, 198(April), Article 107097. https://doi.org/10.1016/j.
compag.2022.107097

Pradana-Lopez, S., Pérez-Calabuig, A. M., Cancilla, J. C., Lozano, M.A., Rodrigo, C.,
Mena, M. L., & Torrecilla, J. S. (2021). Deep transfer learning to verify quality and
safety of ground coffee. Food Control, 122. https://doi.org/10.1016/j.
foodcont.2020.107801. October 2020.

Rahman, Z. U., Asaari, M. S. M., Ibrahim, H., Abidin, I. S. Z., & Ishak, M. K. (2024).
Generative adversarial networks (GANs) for image augmentation in farming: A
review. IEEE Access, 12, 179912-179943. https://api.semanticscholar.org/Corpus
1D:274289211.

Rajoub, B. (2020). Chapter 3 - Supervised and unsupervised learning. In W. Zgallai (Ed.),
Biomedical signal processing and artificial intelligence in healthcare (pp. 51-89).
Academic Press. https://doi.org/10.1016/B978-0-12-818946-7.00003-2.

Ratnasekhar, C. H., Khan, S., Rai, A. K., Mishra, H., Verma, A. K., Lal, R. K., Ananda
Kumar, T. M., & Elliott, C. T. (2025). Rapid metabolic fingerprinting meets machine
learning models to identify authenticity and detect adulteration of essential oils with
vegetable oils: Mentha and Ocimum study. Food Chemistry, 471, Article 142709.
https://doi.org/10.1016/j.foodchem.2024.142709. October 2024.

Razavi, R., & Kenari, R. E. (2023). Ultraviolet-visible spectroscopy combined with
machine learning as a rapid detection method to the predict adulteration of honey.
Heliyon, 9(10), Article e20973. https://doi.org/10.1016/j.heliyon.2023.e20973

Ruttanadech, N., Phetpan, K., Srisang, N., Srisang, S., Chungcharoen, T., Limmun, W.,
Youryon, P., & Kongtragoul, P. (2023). Rapid and accurate classification of
Aspergillus ochraceous contamination in Robusta green coffee bean through near-
infrared spectral analysis using machine learning. Food Control, 145, Article 109446.
https://doi.org/10.1016/j.foodcont.2022.109446. October 2022.

Sagita, D., Widodo, S., Mardjan, S. S., Purwandoko, P. B., Suparlan, Hariadi, H., &
Darniadi, S. (2025). Rapid identification of coffee species and origin using affordable
multi-channel spectral sensor combined with machine learning. Food Research
International, 211, Article 116501. https://doi.org/10.1016/j.foodres.2025.116501.
October 2024.

Saha, D., Senthilkumar, T., Singh, C. B., & Manickavasagan, A. (2023). Quantitative
detection of metanil yellow adulteration in chickpea flour using line-scan near-
infrared hyperspectral imaging with partial least square regression and one-
dimensional convolutional neural network. Journal of Food Composition and Analysis,
120(March), Article 105290. https://doi.org/10.1016/j.jfca.2023.105290

Salhab, W., Ameyed, D., Jaafar, F., & Mcheick, H. (2024). A systematic literature review
on Al safety: Identifying trends, challenges, and future directions. In IEEE access, 12
pp. 131762-131784). https://doi.org/10.1109/ACCESS.2024.3440647

Shehata, M., Dodd, S., Mosca, S., Matousek, P., Parmar, B., Kevei, Z., & Anastasiadi, M.
(2024). Application of Spatial Offset Raman Spectroscopy (SORS) and machine
learning for sugar syrup adulteration detection in UK honey. Foods, 13(15). https://
doi.org/10.3390/foods13152425

Singhal, C. M., Kaushik, V., Awasthi, A., Zalke, J. B., Palekar, S., Rewatkar, P.,
Srivastava, S. K., Kulkarni, M. B., & Bhaiyya, M. L. (2025). Deep learning-enhanced
portable chemiluminescence biosensor: 3d-printed, smartphone-integrated platform

15

Trends in Food Science & Technology 163 (2025) 105153

for glucose detection. Bioengineering, 12(2). https://doi.org/10.3390/
bioengineering12020119

Srivastava, S. K., Bhaiyya, M., Dudala, S., Hota, C., & Goel, S. (2023). A machine learning
approach for electrochemiluminescence based point of care testing device to detect
multiple biomarkers. Sensors and Actuators A: Physical, 350, Article 114135. https://
doi.org/10.1016/j.sna.2022.114135. November 2022.

Sun, Y., Zhang, M., Adhikari, B., Devahastin, S., & Wang, H. (2022). Double-layer
indicator films aided by BP-ANN-enabled freshness detection on packaged meat
products. Food Packaging and Shelf Life, 31(January), Article 100808. https://doi.
org/10.1016/j.fpsl.2021.100808

Tang, Q., Liang, J., & Zhu, F. (2023). A comparative review on multi-modal sensors
fusion based on deep learning. Signal Processing, 213, Article 109165. https://doi.
org/10.1016/j.sigpro.2023.109165

Tang, T., Zhang, M., Jia, H., Bhandari, B., & Guo, Z. (2025). Intelligent monitoring of
fruit and vegetable freshness in supply chain based on 3D printing and lightweight
deep convolutional neural networks (DCNN). Food Chemistry, 480(February), Article
143886. https://doi.org/10.1016/j.foodchem.2025.143886

Teklemariam, T. A. (2024). Raman and mid-infrared spectroscopy coupled with
machine-deep learning for adulterant detection in ground turmeric. Applied
Spectroscopy Practica, 2(2), 1-19. https://doi.org/10.1177/27551857241250014

Teklemariam, T. A., Chou, F., Kumaravel, P., & Van Buskrik, J. (2024). ATR-FTIR
spectroscopy and machine/deep learning models for detecting adulteration in
coconut water with sugars, sugar alcohols, and artificial sweeteners. Spectrochimica
Acta - Part A: Molecular and Biomolecular Spectroscopy, 322(July), Article 124771.
https://doi.org/10.1016/j.saa.2024.124771

Végsholm, 1., Arzoomand, N. S., & Bogvist, S. (2020). Food security, safety, and
sustainability—getting the trade-offs right. Frontiers in Sustainable Food Systems, 4
(February), 1-14. https://doi.org/10.3389/fsufs.2020.00016

Wang, X., Bouzembrak, Y., Lansink, A. O., & van der Fels-Klerx, H. J. (2022). Application
of machine learning to the monitoring and prediction of food safety: A review.
Comprehensive Reviews in Food Science and Food Safety, 21(1), 416-434. https://doi.
org/10.1111/1541-4337.12868

Wang, G., Yan, X., Feng, Y., Chen, Y., Cui, J., Liu, S., & Wang, S. (2025). Deep learning-
driven hyperspectral imaging for real-time monitoring and growth modeling of
psychrophilic spoilage bacteria in chilled beef. International Journal of Food
Microbiology, 439(April), Article 111254. https://doi.org/10.1016/j.
ijfoodmicro.2025.111254

Windarsih, A., Jatmiko, T. H., Anggraeni, A. S., & Rahmawati, L. (2024). Machine
learning-assisted FT-IR spectroscopy for identification of pork oil adulteration in
tuna fish oil. Vibrational Spectroscopy, 134(February), Article 103715. https://doi.
0rg/10.1016/j.vibspec.2024.103715

Wu, C., Peng, Q., Xia, Y., Jin, Y., & Hu, Z. (2023). Towards cost-effective and robust Al
microservice deployment in edge computing environments. Future Generation
Computer Systems, 141, 129-142. https://doi.org/10.1016/j.future.2022.10.015

Wu, X., Xu, B,, Ma, R., Niu, Y., Gao, S., Liu, H., & Zhang, Y. (2022). Identification and
quantification of adulterated honey by Raman spectroscopy combined with
convolutional neural network and chemometrics. Spectrochimica Acta - Part A:
Molecular and Biomolecular Spectroscopy, 274, Article 121133. https://doi.org/
10.1016/j.saa.2022.121133

Yao, Z., Zhang, X., Nie, P., Lv, H,, Yang, Y., Zou, W., & Yang, L. (2023). Identification of
milk adulteration in camel milk using FT-Mid-Infrared spectroscopy and machine
learning models. Foods, 12(24), 1-13. https://doi.org/10.3390/foods12244517

Yavuzer, E., Kose, M., & Uslu, H. (2024). Determining the quality level of ready to-eat
stuffed mussels with Arduino-based electronic nose. Journal of Food Measurement and
Characterization, 18(7), 5629-5637. https://doi.org/10.1007/511694-024-02593-9

Yu, J., Chen, Y., Wang, Z,, Liu, J., & Huang, B. (2022). Food risk entropy model based on
federated learning. Applied Sciences, 12(10). https://doi.org/10.3390/app12105174

Zalke, J. B., Bhaiyya, M. L., Jain, P. A., Sakharkar, D. N., Kalambe, J., Narkhede, N. P.,
Thakre, M. B., Rotake, D. R., Kulkarni, M. B., & Singh, S. G. (2024). A machine
learning assisted non-enzymatic electrochemical biosensor to detect urea based on
multi-walled carbon nanotube functionalized with copper oxide micro-flowers.
Biosensors, 14(10). https://doi.org/10.3390/bios14100504

Zhang, L., Yang, Q., & Zhu, Z. (2024). The application of multi-parameter multi-modal
technology integrating biological sensors and artificial intelligence in the rapid
detection of food contaminants. Foods, 13(12). https://doi.org/10.3390/
foods13121936

Zhao, H., Zhan, Y., Xu, Z., John Nduwamungu, J., Zhou, Y., Powers, R., & Xu, C. (2022).
The application of machine-learning and Raman spectroscopy for the rapid detection
of edible oils type and adulteration. Food Chemistry, 373, Article 131471. https://doi.
org/10.1016/j.foodchem.2021.131471. PB.


https://doi.org/10.1111/1541-4337.13296
https://doi.org/10.1111/1541-4337.13296
https://doi.org/10.1111/bjet.13232
https://doi.org/10.1111/bjet.13232
https://doi.org/10.1016/j.idairyj.2023.105751
https://doi.org/10.1016/j.lwt.2021.111646
https://doi.org/10.3390/ijerph182312635
https://doi.org/10.3390/ijerph182312635
https://doi.org/10.1007/s00217-022-04113-9
https://doi.org/10.1016/j.compag.2022.107097
https://doi.org/10.1016/j.compag.2022.107097
https://doi.org/10.1016/j.foodcont.2020.107801
https://doi.org/10.1016/j.foodcont.2020.107801
https://api.semanticscholar.org/CorpusID:274289211
https://api.semanticscholar.org/CorpusID:274289211
https://doi.org/10.1016/B978-0-12-818946-7.00003-2
https://doi.org/10.1016/j.foodchem.2024.142709
https://doi.org/10.1016/j.heliyon.2023.e20973
https://doi.org/10.1016/j.foodcont.2022.109446
https://doi.org/10.1016/j.foodres.2025.116501
https://doi.org/10.1016/j.jfca.2023.105290
https://doi.org/10.1109/ACCESS.2024.3440647
https://doi.org/10.3390/foods13152425
https://doi.org/10.3390/foods13152425
https://doi.org/10.3390/bioengineering12020119
https://doi.org/10.3390/bioengineering12020119
https://doi.org/10.1016/j.sna.2022.114135
https://doi.org/10.1016/j.sna.2022.114135
https://doi.org/10.1016/j.fpsl.2021.100808
https://doi.org/10.1016/j.fpsl.2021.100808
https://doi.org/10.1016/j.sigpro.2023.109165
https://doi.org/10.1016/j.sigpro.2023.109165
https://doi.org/10.1016/j.foodchem.2025.143886
https://doi.org/10.1177/27551857241250014
https://doi.org/10.1016/j.saa.2024.124771
https://doi.org/10.3389/fsufs.2020.00016
https://doi.org/10.1111/1541-4337.12868
https://doi.org/10.1111/1541-4337.12868
https://doi.org/10.1016/j.ijfoodmicro.2025.111254
https://doi.org/10.1016/j.ijfoodmicro.2025.111254
https://doi.org/10.1016/j.vibspec.2024.103715
https://doi.org/10.1016/j.vibspec.2024.103715
https://doi.org/10.1016/j.future.2022.10.015
https://doi.org/10.1016/j.saa.2022.121133
https://doi.org/10.1016/j.saa.2022.121133
https://doi.org/10.3390/foods12244517
https://doi.org/10.1007/s11694-024-02593-9
https://doi.org/10.3390/app12105174
https://doi.org/10.3390/bios14100504
https://doi.org/10.3390/foods13121936
https://doi.org/10.3390/foods13121936
https://doi.org/10.1016/j.foodchem.2021.131471
https://doi.org/10.1016/j.foodchem.2021.131471

	Artificial intelligence for food safety: From predictive models to real-world safeguards
	1 Introduction
	2 Types of ML relevant to food safety
	3 Key AI/ML models used in food safety
	3.1 Decision trees and random forests
	3.2 Support vector machines (SVM)
	3.3 Partial Least Squares (PLS)
	3.4 Convolutional neural networks (CNNs)
	3.5 Recurrent Neural Networks (RNNs) and long short-term memory (LSTM)
	3.6 Clustering algorithms (K-means)

	4 Performance metrics for food safety models
	5 Real-world case studies of AI in food safety
	5.1 Case-based insights across dairy, oils, spices, and pulse adulteration detection using AI-ML models
	5.2 Predicting shelf-life of packaged meat, smart grading of fruits and vegetables through AI and ML
	5.3 Spoilage detection in ready-to-eat (RTE) meals through AI-ML models

	6 Challenges and possible solutions
	6.1 Data availability and quality
	6.2 Generalizability across geographies and food types
	6.3 Interpretability of complex ML models
	6.4 Cost and infrastructure constraints in rural or developing regions
	6.5 Regulatory and standardization challenges
	6.6 Human-system integration and capacity building

	7 Conclusion and future direction
	CRediT authorship contribution statement
	Availability of data and material
	Funding
	Declaration of competing interest
	Data availability
	References


