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A B S T R A C T

Food safety is no longer just a lab issue; it’s a real-world challenge that affects everyone from farmers and 
vendors to regulators and consumers. With rising concerns about adulteration, spoilage, and contamination in 
everyday items like milk, oils, fruits, and ready-to-eat meals, traditional testing methods often fall short; they’re 
too slow, too expensive, and not designed for real-time action. This review explores how artificial intelligence 
(AI) and machine learning (ML) are stepping in as game-changers. We highlight real case studies where AI 
models, combined with tools like spectroscopy, smart sensors, and computer vision, are detecting food fraud and 
spoilage quickly and accurately. Beyond the technology, we also discuss challenges like data gaps, model trust, 
and affordability in rural areas, while offering forward-looking solutions like federated learning and low-cost AI 
devices. This review will be especially valuable for food scientists, quality assurance professionals, tech de
velopers, policy-makers, and startups looking to build safer, smarter food systems. It’s a practical guide for 
turning AI innovation into real-world food safety solutions.

1. Introduction

Food is one of the most essential elements of life, and yet, ensuring its 
safety remains one of the most challenging tasks in the modern world. In 
both developing and developed nations, concerns related to food adul
teration, spoilage, contamination, and mislabelling are growing at an 
alarming rate (Bansal et al., 2017; Deshmukh et al., 2025). The 
complexity of today’s food supply chains, which often span multiple 
countries and involve diverse storage, transport, and processing condi
tions, further increases the risk of compromised food safety. Ordinary 

food commodities such as milk, spices, edible oils, grains, pulses, fruits, 
vegetables, beverages, and sweeteners are often adulterated with un
desirable or non-permitted substances (Anagaw et al., 2024; Machado 
Nardi et al., 2020). For example, urea or detergents may be blended with 
milk to raise the viscosity and foaming capacity of the product, while 
turmeric and chili powder may be added with lead chromate to enhance 
appearance. Mustard oil, a staple in many households, is sometimes 
diluted with the highly toxic argemone oil. Grains and pulses may un
dergo artificial polishing to increase shine, and fruits are often ripened 
using calcium carbide or coated with waxes to improve visual appeal. 
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Similarly, used tea leaves are dyed and reused, while sugar and salt are 
contaminated with chalk powder or washing soda. Even seemingly 
natural products like honey may be diluted with glucose or sugar syrup, 
and fruit juices may contain synthetic colors or preservatives far beyond 
safe limits (Hoque & Mondal, 2019; Li et al., 2021). In order to provide 
some clarity, various food adulteration examples have been grouped 
into examples of dairy, oils, spices, grains, fruits, sweeteners, and 
miscellaneous. Each example has a summary of common adulterants and 
their associated health risks (summarized in Table 1). This arrangement 
aids in comprehending food fraud and demonstrates the broad health 
risks associated with varying types of food.

These adulterants and contaminants might not only change taste and 
remove nutritional value, but also present potential health threats 
ranging from intestinal infection, kidney damage, nervous system 
impairment, or cancer in extreme situations. The economic costs are 
substantial, too. This adds up to lost products and damage to brand 
reputation through loss of product integrity, regulatory fines, or health 
care costs (Vågsholm et al., 2020). Although traditional methods of food 
testing, such as chemical testing or culture for specific microbes, may be 
precise, they take significantly more time, money, and laboratory setup 
and equipment. In this way, the scalability is also an issue for real-time 
food protection, or monitoring food from production through con
sumption. To address these limitations, artificial intelligence (AI) and 
machine learning (ML) have emerged as powerful tools in the domain of 
food safety. AI has the potential to alter how we detect, monitor, and 
predict food-related risks. By leveraging large volumes of data, whether 
from sensors, images, spectral analyses, or even text, AI models can learn 
patterns that differentiate safe food from unsafe food and can do so in 
real time (Chhetri, 2024; Karanth et al., 2023; Liu et al., 2023). More 
importantly, AI systems can scale across locations, adapt to different 
types of food, and be embedded into smart devices for continuous 
monitoring. As shown in Fig. 1, traditional food safety workflows consist 
of time-consuming and sequential tasks, including sample collection, lab 
testing, and human interpretation, which are inherently reactive and 
labor-consuming. In contrast, Fig. 1 demonstrates an AI-powered food 
safety system that is able to streamline food safety workflows with 
simultaneous data ingestion and predictive analytics to create proactive 
and scalable solutions (Kakani et al., 2020).

A variety of AI/ML techniques have already shown success in specific 
food safety applications. In milk adulteration detection, support vector 

machines (SVM) trained on near-infrared (NIR) or Fourier transform 
infrared (FTIR) spectroscopy data can identify the presence of urea, 
starch, and detergents with accuracy exceeding 95 %. For edible oils, ML 
models like XGBoost have been effectively used to distinguish between 
pure and adulterated samples by analyzing their spectral fingerprints. In 
the domain of fruits and vegetables, convolutional neural networks 
(CNNs) can analyze images to detect ripeness, bruising, fungal in
fections, or chemical residues on the surface. These models are not 
limited to visible contaminants, they can also flag subtle changes that 
are hard for human eyes to detect (X. Wang et al., 2022; Ben Ayed & 
Hanana, 2021). AI’s applications in this area do not end. In packaged 
meat and ready-to-eat meals, deep learning models that involve CNN 
and long short-term memory (LSTM) networks can analyze images and 
supplemental environmental information (e.g. temperature and hu
midity) to predict how long a product would be good for sale and the 
spoiling onset. Blockchain combined with AI is another emerging solu
tion, allowing for traceable, tamper-proof tracking of food products 
along supply chains (Dhal & Kar, 2025a; Kumar et al., 2021).

AI algorithms can detect anomalies in distributed ledger entries, 
helping to ensure the authenticity and safety of food items across bor
ders. Despite these advances, several challenges still limit the wide
spread adoption of AI in food safety. A key issue is data availability. 
Reliable AI models require large, high-quality datasets that are repre
sentative of a wide variety of different geographies, food products, and 
food adulteration approaches. However, food safety data is typically 
fragmented, inconsistent, or simply unavailable due to privacy issues or 
a lack of infrastructure. For example, a model trained on milk samples 
from India will likely not perform well on samples from Europe because 
they may have different additives or processing techniques. Also, many 
of the deep learning and AI models, while accurate, often operate as 
black boxes, and this lack of interpretability can result in food regulators 
or quality assurance professionals simply not trusting the predictions 
enough to act on them. Finally, for many rural and under-resourced 
areas of the world, there may be a lack of sensors, power supply, or 
internet infrastructure that would further make AI solutions challenging 
to deploy or implement (Ennab & Mcheick, 2024; Mu et al., 2024; Sal
hab et al., 2024).

To address these limitations, researchers and innovators are 
exploring a number of valuable approaches. One approach is federated 
learning, which allows several clients to train a common AI model 

Table 1 
Common food adulterants by category and associated health risks.

Category Common 
Food Items

Typical 
Adulterants

Associated Health Risks

Dairy Products Milk Urea, Detergents, 
Starch

Kidney damage, 
gastrointestinal issues, 
metabolic disorders

Edible Oils Mustard oil, 
Coconut oil

Argemone oil, 
Paraffin wax

Glaucoma, liver 
toxicity, cardiac issues

Spices & 
Condiments

Turmeric, 
Chili powder, 
Coriander

Lead chromate, 
Sudan dyes, 
Sawdust

Carcinogenic effects, 
anemia, and 
neurological disorders

Grains & Pulses Wheat, Rice, 
Lentils

Polished with 
artificial agents, 
stone chips, 
coloring agents

Digestive tract 
irritation, kidney 
problems

Fruits & 
Vegetables

Bananas, 
Mangoes, 
Apples

Calcium carbide, 
Wax coating, 
Artificial ripening 
agents

Respiratory issues, 
neurotoxicity, and 
potential 
carcinogenicity

Sweeteners & 
Beverages

Sugar, Honey, 
Fruit Juices

Chalk powder, 
Glucose syrup, 
Synthetic food 
colors

Tooth decay, diabetes 
risk, liver stress, and 
cancer risk

Miscellaneous Tea leaves, 
Salt

Iron fillings, 
washed/dyed used 
leaves, Washing 
soda

Abdominal issues, 
dental enamel 
corrosion, and potential 
poisoning

Fig. 1. A Comparative Overview of Traditional vs AI-Driven Food Safety 
Workflows: Enhancing Efficiency, Accuracy, and Accessibility.
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without needing to share raw data, all while also protecting privacy and 
maintaining diversity. Another is generating synthetic data, which can 
serve as an alternative when the number of real-world datasets is 
limited. Multimodal AI models, which can integrate data from cameras, 
gas sensors, electronic tongues, and olfactory sensors (e-noses), provide 
a more holistic picture of food quality and safety. These models can 
detect multiple forms of adulteration simultaneously and adapt to 
different types of food products (Gbashi & Njobeh, 2024; Yu et al., 2022; 
Zhang et al., 2024). This review aims to explore the full potential of AI in 
food safety from a scientific and application-oriented perspective. It 
begins by introducing different types of machine learning, supervised, 
unsupervised, and reinforcement learning, and how each type supports 
various food safety tasks. For example, supervised learning is used for 
classifying adulterated vs. pure food samples, while unsupervised 
learning helps detect anomalies in large-scale food processing systems. 
Reinforcement learning is being explored for real-time decision-making 
in automated food inspection and smart kitchen environments. Next, we 
delve into the key machine learning models, including decision trees, 
random forests, SVMs, CNNs, RNNs, and ensemble models, highlighting 
their strengths and specific food safety use cases.

Following the technical overview, we analyze important perfor
mance metrics such as accuracy, precision, recall, F1-score, and area 
under the curve (AUC), all of which are critical for evaluating model 
reliability, especially in real-world settings. We also present real-world 
case studies to illustrate how these AI techniques are being applied 
across different food categories, from milk and meat to fruits, juices, and 
grains. Finally, we examine existing challenges and propose future di
rections, such as integrating AI with biosensors, using synthetic data 
generation, and building globally interoperable AI models for food 
safety. By focusing on practical examples across diverse food categories, 
milk, spices, oils, grains, fruits, beverages, and more, this review high
lights the current landscape, gaps, and future promise of AI in ensuring 
food safety. The overarching goal is not only to summarize technological 
progress but to guide future research and development toward making 
food safer for everyone, everywhere. With the right mix of innovation, 
collaboration, and regulatory support, AI can serve as a powerful safe
guard in the global food system, capable of protecting consumers, 
improving transparency, and ultimately building a safer food future.

2. Types of ML relevant to food safety

ML is not a one-size-fits-all technology; there are different ways it can 
learn depending on the type of data and the problem it needs to solve. In 
the context of food safety, the three most important types of learning are 
supervised learning, unsupervised learning, and reinforcement learning. 
Each of these plays a unique role in helping us detect, classify, or even 
predict problems related to food adulteration, spoilage, and contami
nation. Choosing the right type of learning method depends on whether 
we already know what we’re looking for, or if we need the system to 
discover unknown patterns on its own (Morales & Escalante, 2022).

Supervised learning is the most commonly used approach to food 
safety. It involves training an algorithm on a dataset with labeled ex
amples where the correct answer is already known. For example, if we 
want a machine to detect adulterated milk, we can use thousands of milk 
samples that each have labels “pure” or “adulterated” and include the 
specific adulterant, such as urea, starch, or detergent. Once the model is 
trained, it can make predictions on new (previously unseen) milk sam
ples with a high degree of accuracy. Methods such as Support Vector 
Machines (SVM) and Random Forests are particularly effective here and 
are typically applied to spectroscopy data, for example, near-infrared 
(NIR) or Fourier-transform infrared (FTIR), to reveal chemical signa
tures of adulterants. Similarly, for fresh produce like fruits and vegeta
bles, Convolutional Neural Networks (CNNs), a type of deep learning 
model, can analyze images to spot signs of spoilage, bruising, or over- 
ripeness. Because supervised models learn from labeled examples, 
they are great for classification tasks where we already know what 

“good” and “bad” food looks like.
At the same time, unsupervised learning is sometimes used when we 

have unlabeled data or when we don’t know exactly what we expect. 
These models will identify hidden patterns or groupings on their own. In 
food safety, unsupervised learning is sometimes used to identify unusual 
behavior or unexpected changes in the process. For instance, in a food 
processing plant, sensors collect massive amounts of data about tem
perature, humidity, or gas emissions. Algorithms like K-means clustering 
can group this data to identify patterns of normal operation and detect 
when something abnormal, like early spoilage or a machine malfunc
tion, starts to happen. Likewise, hyperspectral imaging, including for 
spices or edible oils, has also been found to reveal finer differences be
tween pure and adulterated products by using dimensionality reduction 
methods (e.g., Principal Component Analysis (PCA)). The unsupervised 
modeling may not provide direct insight into what the issue was, but is 
useful in marking an area that may warrant further investigation 
(Haldorai et al., 2020; Rajoub, 2020).

The third category, known as reinforcement learning, is still devel
oping in the area of food safety. However, reinforcement learning offers 
the potential for advancement, particularly in decision-making sce
narios with a real-time approach. Reinforcement learning operates, 
essentially, like trial-and-error modeling. There is an entity (the “agent”) 
that interacts with its environment, collects data based on the role of the 
environment when taking an action sequence, just as humans typically 
do, to learn the task through taking an action and being rewarded or 
punished for that action. In food processing or storage, reinforcement 
learning can help maintain ideal conditions by constantly adjusting 
parameters like temperature, airflow, or conveyor speed based on sensor 
input. For example, if a sensor detects an increase in humidity that could 
lead to spoilage, a reinforcement learning system might learn to activate 
cooling or drying mechanisms to prevent quality loss. Some early ex
periments have used Reinforcement learning to manage cold-chain lo
gistics, ensuring perishable foods like meat or dairy are stored under 
optimal conditions while reducing energy usage. Though still in devel
opment, reinforcement learning has the potential to make food safety 
systems more autonomous and responsive in the future (Kish, 2018).

Among these three learning types, supervised learning is currently 
the most popular and widely adopted in food safety applications. The 
main reason is that it provides highly accurate results when good-quality 
labeled data is available, which is often the case for common tasks like 
detecting adulterants in milk, classifying the quality of fruits, or pre
dicting shelf-life based on environmental data. Models like SVM, 
Random Forest, and CNN are supported by mature libraries and toolkits, 
making them easier to implement and integrate into existing food 
quality monitoring systems. Also, since supervised learning models can 
give very specific results, like “this honey contains sugar syrup” or “this 
batch of turmeric contains lead chromate”, they are particularly useful 
for regulatory and compliance checks. That said, both unsupervised and 
reinforcement learning are gaining ground, especially in situations 
where labeled data is limited or unavailable. As more food production 
systems become digitized and connected through IoT sensors, the need 
for smart, real-time, and adaptable learning systems will grow. In such 
cases, combining all three learning approaches may offer the most 
powerful and flexible solution for food safety management (M. Bhaiyya 
et al., 2024).

3. Key AI/ML models used in food safety

3.1. Decision trees and random forests

DT and RF are among the most widely used ML models in food safety 
applications. These models are particularly valued for their simplicity, 
interpretability, and ability to handle both categorical and numerical 
data. DT mimics the way humans make decisions by asking a series of 
yes/no or if/else questions and is very effective in classification prob
lems. RF builds on this concept by combining many decision trees to 
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improve prediction accuracy and reduce the risk of overfitting (Refer to 
Fig. 2(A)). To make this easier to understand, let’s walk through a real- 
world example involving the detection of milk adulteration using 
spectroscopy data and RF (M. L. Bhaiyya et al., 2023; Manekar et al., 
2025). In summary, DT and RF strike a great balance between inter
pretability and performance when it comes to food safety; this is why 
these ML approaches are often used. While DT is easy and interpretable 
by itself, RF adds a significant level of reliability and reproducibility to 

the original dataset, often reducing the noise in the Dataset. Further
more, their ability to handle larger amounts of real-world food quality 
data, whether it be images, sensor data, or spectral data, makes them 
one of the most used and trusted ML models in the industry.

3.2. Support vector machines (SVM)

Support Vector Machines, or SVMs, are one of the most powerful 

Fig. 2. (A) DT and RF: Ensemble-based prediction of milk purity using 100 decision trees and majority voting to classify samples as pure or adulterated. (B) SVM: 
SVM model classifying milk samples by finding the optimal hyperplane separating pure and adulterated classes using support vectors. (C) Step-by-step architecture of 
a CNN used to classify tomatoes based on ripeness using image features. (D) Sequential LSTM model predicting meat spoilage based on time-series sensor data, 
tracking environmental changes to enable early intervention. (E) K-means clustering groups food samples based on features like temperature, humidity, and gas levels 
to identify spoilage risk without predefined labels. (F) A unified technical classification framework for AI/ML models used in food safety.
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tools in ML, especially when it comes to making decisions based on 
subtle differences in data. In the context of food safety, SVMs are 
commonly used to detect food adulteration, particularly in cases where 
we have chemical or spectral data that can tell us what’s inside a food 
sample. What makes SVMs special is their ability to find a clear dividing 
line (or boundary) between two categories, for example, “pure milk” and 
“milk with urea”, even when the data is complex and not easily sepa
rated. Let’s take a practical example. Suppose we want to detect whether 
milk samples are adulterated with urea, a harmful chemical sometimes 
added to make the milk look richer in protein. Every milk sample is 
passed through a near-infrared (NIR) spectrometer, which measures 
how the milk absorbs light at different wavelengths. Each sample pro
duces a set of numbers that together act like a fingerprint, unique to that 
sample’s chemical composition. These spectral patterns become our 
input data. For training the model, the lab also adds labels like “pure” or 
“adulterated,” based on confirmatory chemical tests. This labeled data 
forms the foundation of the supervised learning process (Srivastava 
et al., 2023).

Now, when we train an SVM model on this data, it essentially looks at 
all the pure and adulterated samples and tries to find the best possible 
boundary between them. But it doesn’t just pick any random line. 
Instead, it finds the one that leaves the widest possible gap (or margin) 
between the two classes, like creating a buffer zone between “safe” and 
“unsafe.” The data points that sit closest to this boundary are called 
support vectors, and they help define the exact placement of this deci
sion line. To understand this more visually, imagine plotting the spectral 
values of milk samples on a graph. The SVM draws a line between the 
two categories in such a way that it doesn’t just barely separate them; it 
gives some breathing room to avoid mistakes when new samples are 
tested. This makes SVMs especially good at avoiding false alarms while 
still catching most of the problematic cases (Liang et al., 2024, 2025; Ni 
et al., 2023).

Once the model is trained, we can use it to predict the status of a new 
milk sample, shown in Fig. 2 (B). The new sample is scanned by the NIR 
spectrometer, and its data is fed into the SVM model. If the sample falls 
on the “pure” side of the boundary, the system classifies it as safe. If it’s 
closer to the side that matches previously adulterated samples, it gets 
flagged for further testing. This whole process takes just a few seconds 
and can be automated to work in real-time at collection centers or milk 
processing units. What makes SVM particularly useful in this kind of 
problem is its ability to handle complex, high-dimensional data like 
spectra. Even if the pure and adulterated samples don’t follow a clear 
linear pattern, SVM can use something called the kernel trick to bend the 
decision boundary into a shape that fits the data better. This flexibility 
means that SVM can handle real-world complications like noisy data or 
overlapping features. In conclusion, SVM is akin to a clever filter. It 
learns the differences between uncontaminated and contaminated food 
samples by analysing the chemical or spectral fingerprints. Once the 
training is completed, it makes fast, correct decisions and helps labs and 
food inspectors to catch dangerous adulterants before they get to the 
consumer. For any food product where chemical composition tells the 
story, such as milk, honey, spices, or oils, SVM can be the best, reliable, 
and efficient option.

3.3. Partial Least Squares (PLS)

Partial Least Squares (PLS) offers a robust regression method spe
cifically designed to analyze complicated high-dimensional data, such as 
spectra of food samples. PLS methods do not use all of the original 
variables; some of which may be noisy and share a high correlation. PLS 
takes the complicated input data (like absorbance values from NIR or 
FTIR) and throws away those individual (and difficult to interpret) 
variables in favour of a smaller number of new features called latent 
variables, that nonetheless capture nearly all of the information that 
suggests a relevant pattern linking the input to an outcome (like the level 
of adulteration or microorganisms spoilage). Whereas some approaches 

consider solely the input data in determining a predictive outcome, PLS 
supports and identifies meaningful patterns directly available for pre
dicting outcomes. This is particularly relevant in food safety applica
tions, where often the analysis is only the measure of subtle differences 
in chemistry or the prediction of levels of contamination from sensory 
input data. Every day, there are articles in the scientific literature dis
cussing the need for quantified predictors of food quality, whether this is 
an estimation of sugar syrup in honey, gas freshness in a packaged fruit, 
or food. PLS is a useful approach in all of these contexts, with accuracy 
and speed vital for the current generation in real-life monitoring of food 
quality (Liang et al., 2024, 2025; Ni et al., 2023).

3.4. Convolutional neural networks (CNNs)

CNNs (Convolutional Neural Networks) are a type of deep learning 
model optimized for image applications in food quality assessments, like 
detecting mold on bread, fruit ripeness grading, and bruising detection 
in vegetables, as shown in Fig. 2 (C). CNNs automatically learn hierar
chical visual features, such as edges, textures, or patterns, directly from 
raw images without requiring manual feature engineering. In food 
safety, this enables real-time, non-invasive inspection of surface-level 
spoilage or visual adulteration. CNNs are appreciated for their scal
ability to various image datasets and their capacity to manage compli
cated visual patterns, often beyond the detection capabilities of 
conventional methods or human inspectors (M. Bhaiyya et al., 2024; 
Singhal et al., 2025). CNN is like a super-powered visual inspector. They 
can examine thousands of food items in real-time, pick out the tiniest 
signs of spoilage or contamination, and make accurate, consistent de
cisions. Their layered structure, from simple edge detectors to complex 
classifiers, allows them to “understand” food images much like a trained 
quality inspector would, but faster and more reliably (Alzahrani, 2025; 
Ko et al., 2021).

3.5. Recurrent Neural Networks (RNNs) and long short-term memory 
(LSTM)

Recurrent Neural Networks (RNNs) and Long Short-Term Memory 
(LSTMs) are developed for use with sequential or time-series data, 
making it appropriate to use these algorithms to predict progressions 
towards spoilage, or to track environmental parameters in a refrigerated 
environment, such as temperature and gas concentrations. While RNNs 
track short-term dependencies, LSTMs improve on this by capturing 
both short- and long-term temporal trends, thanks to their internal 
memory architecture (Ding et al., 2025; Geng et al., 2022). In the 
context of food safety, LSTM can predict the possibility of spoilage of a 
product using past sensor data and make notified decisions in the active 
cold chain or packaged food supply chain, as shown in Fig. 2 (D). Their 
predictive ability arises from uncovering data points in time and 
providing forecasts for degradation of quality trends before they are 
critical (H. Lu et al., 2025; Sun et al., 2022; G. Wang et al., 2025).

Food doesn’t go bad instantly; it follows a process. That process in
volves many small changes over time. Whether it’s the slow rise of 
temperature in a refrigerator or increasing gas levels in sealed pack
aging, these changes follow a time-dependent pattern. RNNs and espe
cially LSTM models are great at spotting such patterns. While CNNs are 
excellent for image-based tasks and RFs are great for classification, they 
don’t handle sequences very well. They can look at one moment and say 
“this is spoiled” or “this is not”, but they don’t consider what’s been 
happening over the past few hours or days. RNNs and LSTMs do. They’re 
designed to connect the dots over time and make smarter, context-aware 
predictions. In conclusion, RNNs and LSTM models are similar to food 
safety prognosticators. They do not solely respond with the immediate 
future in mind; they use past information to recognize trends and fore
cast what will possibly happen next. In an environment where a handful 
of hours can transform a food item from fresh to spoiled, these models 
are becoming valuable assets for developing smarter and safer food 
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systems.

3.6. Clustering algorithms (K-means)

K-means is perhaps one of the most popular clustering techniques in 
ML, especially in the case of clustering data to explore patterns without 
pre-defined labels. In the context of food safety, K-means could be very 
handy to find hidden trends for spoilage, cluster similar food batches, or 
catch early signs of quality issues, without telling the system what to 
investigate, as shown in Fig. 2 (E). K-means is a kind of unsupervised 
learning wherein the instruction is based solely on the sample data 
without supervision, and the model finds clusters based on similarity 
(Agarwal et al., 2023; Q. Chen, 2024). The reason K-means is so useful in 
food safety is that it provides early, data-driven insights even before we 
have ground truth labels. It’s fast, simple to implement, and can work on 
large datasets with multiple variables. And while it doesn’t make direct 
predictions like supervised models, it helps reveal hidden structures in 
the data, which can then guide decision-making, resource allocation, 
and further testing.

4. Performance metrics for food safety models

Building an AI model for food safety is only half the job. The other 
half is measuring how well it performs, because when it comes to 
detecting adulteration, spoilage, or contamination, even a small error 
can have serious consequences. That’s where performance metrics come 
in. These metrics help us (shown in Fig. 2 (F)) understand whether the 
model is just good on paper or actually useful in the real world. Accuracy 
is the most basic metric; it tells us how often the model is right. But in 
food safety, accuracy alone can be misleading. Imagine a model that 
calls everything “safe” in a batch where only 5 out of 100 samples are 
actually adulterated. It may be 95 % accurate, but it’s dangerously 
useless. That’s why we look deeper. Precision shows how many of the 
items flagged as “unsafe” truly are unsafe. It helps avoid false alarms and 
food wastage. Recall, on the other hand, tells us how many unsafe items 
the model actually caught. A high recall is vital when missing even one 
contaminated product could put lives at risk. F1-score combines both 
precision and recall, useful when we need a balance between catching 
real threats and avoiding unnecessary rejections. A confusion matrix 
gives a complete picture of how many samples were correctly or 
incorrectly classified, and in what way. It helps identify if the model is 
being too strict, too lenient, or missing key patterns. For models that 
make predictions over time, like estimating when food will spoil, we use 
MAE (Mean Absolute Error) or RMSE (Root Mean Squared Error). These 
tell us how far off the model’s predictions are. Lower values mean better 

accuracy, which is critical in cold chains or shelf-life forecasting. 
Another important metric is inference time, how quickly the model 
makes a decision. In real-time environments like sorting fruits on a 
conveyor or scanning milk cartons, even a 1-s delay can slow down 
operations. So, fast and efficient models are preferred here. Lastly, ROC- 
AUC helps us see how well a model separates safe and unsafe items 
across different threshold settings. It’s especially helpful when we want 
to compare multiple models before choosing the best one. In short, 
different tasks need different metrics. A model for allergen detection 
needs high recall. A model for grading fruits may focus on accuracy and 
speed. Choosing the right metric isn’t just a technical decision; it’s about 
safety, efficiency, and trust (Kahar et al., 2023; Zalke et al., 2024). To 
make this information more accessible to practitioners and engineers 
working in food safety, we summarize these metrics in Table 2, along 
with specific food safety examples and why each metric matters in 
real-world contexts.

5. Real-world case studies of AI in food safety

5.1. Case-based insights across dairy, oils, spices, and pulse adulteration 
detection using AI-ML models

The real power of AI and ML in food safety comes to life when we 
look at how these technologies are being applied across different food 
categories. From milk and honey to spices and juices, researchers have 
explored a variety of AI-driven solutions to detect adulterants quickly, 
accurately, and non-destructively. These case studies not only highlight 
the potential of AI/ML but also show how each application contributes 
to safer, more transparent food systems.

In the dairy sector, a 2024 study addressed the problem of real-time 
detection of milk adulterants such as starch and urea, which are 
commonly used to manipulate protein content. Using a multi-sensor IoT 
setup comprising pH, VOC, fat/protein, and conductivity sensors, the 
system captured detailed chemical signatures of milk samples, as shown 
in Fig. 3 (A). An ensemble ML model integrated with SHAP explain
ability achieved 96 % accuracy, enabling both accurate predictions and 
interpretability. Compared to traditional chemical assays, this system 
offered real-time operation and portability, making it well-suited for 
supply chain monitoring (K. Goyal et al., 2024). Building upon the 
success in dairy, another study focused on detecting adulteration in 
edible oils, a common practice involving dilution with paraffin or castor 
oil, as shown in Fig. 3 (B). The researchers used hyperspectral imaging to 
capture fine spectral differences across oil samples. Preprocessing with 
Savitzky-Golay filtering enhanced data quality, and models including 
RF, SVM, and LDA were employed for classification. The LDA model 

Table 2 
Performance metrics for AI models in food safety applications.

Metric Definition Application in Food Safety Importance

Accuracy Percentage of total correct predictions Classifying fruit as “ripe”, “overripe”, or 
“spoiled” using CNN

General reliability of the model across all predictions

Precision TP/(TP + FP): How many predicted positives 
are actually correct

Identifying contaminated milk samples 
without wrongly flagging pure ones

Reduces false alarms, prevents unnecessary rejections

Recall 
(Sensitivity)

TP/(TP + FN): How many actual positives are 
detected

Detecting all spoiled ready-to-eat meals Critical as missing unsafe samples can cause health hazards

F1-Score Harmonic mean of precision and recall Evaluating model performance in honey 
adulteration detection

Balanced performance when both FP and FN need to be 
minimized

Confusion 
Matrix

Breakdown of true vs. false classifications 
across all classes

Evaluating model predictions for multi-class 
food classification (e.g., spices)

Helps diagnose if the model is biased or misclassifying 
specific classes

ROC-AUC Measures the ability to separate classes across 
thresholds

Comparing models in detecting adulteration in 
edible oils

Helps choose the best model for binary food safety 
classification

R2 Score Proportion of variance in the dependent 
variable explained by the model

Quantifying adulterant concentration in honey 
using PLSR or SVR models

Indicates model fit for regression tasks; important in shelf- 
life prediction and spoilage quantification

MAE/RMSE Error between predicted and actual values 
(continuous output models)

Predicting shelf-life of packaged meat using 
sensor data + LSTM

Evaluates how close model forecasts are to real-world values

Inference Time Time taken for the model to give output Real-time fruit grading on conveyor belts Important for high-speed industrial automation
Confidence 

Score
Model’s probability estimate of prediction 
correctness

Reporting confidence in detecting sugar syrup 
in honey

Useful for regulators and QA teams to assess trust in 
predictions
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achieved 100 % validation accuracy, demonstrating that 
non-destructive imaging-based approaches can outperform GC-MS or 
HPLC in speed, cost-efficiency, and ease of use (Aqeel, Sohaib, Iqbal, 
Rehman, & Rustam, 2024).

Transitioning from oils to beverages, a study investigated the adul
teration of coconut water with sugar-based additives. The researchers 
developed a fingerprint database using ATR-FTIR spectroscopy of 15 
adulterants, as shown in Fig. 3 (C). Two models, RF and 1D CNN, were 
trained on the spectral data, with the CNN achieving 96 % classification 
accuracy directly from raw spectra. This eliminated the need for manual 
feature engineering, highlighting the model’s efficiency and practicality 

for real-world deployment (Teklemariam et al., 2024). A similar deep 
learning framework was applied to detect syrup-based adulterants in 
honey, a high-value product often diluted with high fructose or rice 
syrups. The study employed Raman spectroscopy combined with CNN 
and PLS regression, as shown in Fig. 3 (D). The CNN yielded >97 % 
classification accuracy, while PLS achieved R2 > 0.98 for quantitative 
prediction. These results indicate a marked improvement over conven
tional HPLC or isotope ratio analysis, offering a non-invasive, rapid, and 
field-deployable solution (X. Wu et al., 2022). Extending the focus to 
powdered foods, another study tackled starch adulteration in turmeric 
powder, a common but harmful practice. Using a combination of 

Fig. 3. (A) AI-based milk adulteration detection using ensemble ML models, taken from (K. Goyal et al., 2024), with the permission of Elsevier. (B) Spectral and 
ML-Based detection of adulteration in Edible Oils, taken from (Aqeel, Sohaib, Iqbal, Rehman, & Rustam, 2024), with the consent of Elsevier. (C) Coconut water 
adulteration detection using FTIR spectra and ML algorithms, taken from (Teklemariam et al., 2024), with the permission of Elsevier. (D) Deep Learning architecture 
for honey adulteration detection from Raman Spectra, taken from (X. Wu et al., 2022), with the permission of Elsevier. (E) AI-Driven spectroscopic analysis for starch 
adulteration in turmeric powder, taken from (Lanjewar, Asolkar, et al., 2024) with the permission of Elsevier. (F) AI-Powered detection system for chickpea flour 
adulteration, taken from (Saha et al., 2023) with the permission of Elsevier.
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visible-NIR spectroscopy and multispectral imaging, the researchers 
applied RF and DenseNet201 architectures to detect adulterants at trace 
levels, as shown in Fig. 3 (E). With an F1-score exceeding 92 %, the 
method proved to be both sensitive and scalable. This study also 
emphasized the benefit of combining multiple imaging modalities to 
boost detection robustness (Lanjewar, Asolkar, et al., 2024).

Authentication challenges were also tackled in tea and spice prod
ucts. In one study, UV–Vis spectroscopy combined with PLS-LDA and 
SVM models successfully distinguished black tea samples based on their 
narrow geographic origin, with 98 % accuracy. This chemical 
fingerprinting-based technique provides an affordable and scalable 
alternative to isotope or metabolomics-based geographic authentica
tion, enhancing traceability and transparency in global tea markets 

(Mohammadi et al., 2024). To address adulteration in coriander powder, 
FTIR spectroscopy was merged with ML models such as ANN and SVR. 
The optimized models predicted sawdust adulteration with R2 values 
exceeding 0.96, making the system suitable for both qualitative and 
quantitative adulteration analysis. This approach not only supports 
automated, high-throughput monitoring but also demonstrates how 
spectral-ML frameworks can be tailored for specific species (R. Goyal 
et al., 2025). Finally, in the domain of pulses, a study explored the 
adulteration of chickpea flour with metanil yellow, a toxic dye. The 
researchers employed line-scan NIR hyperspectral imaging, which pro
vided pixel-wise spectral profiles. Using 1D CNN and PLS regression, 
they achieved an R2 of 0.992, successfully identifying adulteration down 
to 0.1 % concentration, as shown in Fig. 3 (F). Compared to traditional 

Fig. 4. (A) AI for quality assessment of packaged minced pork using spectroscopy and regression models, taken from (Fengou et al., 2020), with the permission of 
Elsevier. (B) Deep Learning-Based shelf-life prediction of mushrooms via image classification, taken from (Javanmardi & Ashtiani, 2025) with the permission of 
Elsevier. (C) AI for assessing the freshness of fruits and vegetables using image-based deep learning models, taken from (T. Tang et al., 2025), with the permission of 
Elsevier. (D) AI model for automated grading of pomegranate fruits based on experimental correlation, taken from (Fashi et al., 2020), with the permission 
of Springer.
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spot sampling, this approach enabled continuous monitoring of pro
duction lines, paving the way for real-time industrial integration (Saha 
et al., 2023).

Together, the case studies of Section 5.1 reveal the range of AI/ML 
applications across a broad range of food matrices, such as dairy, edible 
oils, spices, and pulses. They show how strong the effect is in terms of 
using spectroscopy/imaging combined with various classification and 
regression models, such as SVM, RF, CNN, and PLS, for rapid and non- 
destructive detection of adulteration. But, examining the models more 
closely exposes additional common limitations: most models are 
developed assuming a limited dataset or a dataset produced in the lab, 
and may not be able to fully encapsulate the variability that real-world 
food supply chains have. It would also be difficult to generalize these 
models to other arbitrary geographies, variations in raw materials, and 
complex mixtures of adulterants. Furthermore, the lack of deployment- 
ready prototypes, especially in low-resource settings, suggests a gap 
between technological promise and field-level adoption. A more 
rigorous focus on transfer learning, domain adaptation, and low-cost 
sensor integration could help bridge this translational divide in future 
work.

5.2. Predicting shelf-life of packaged meat, smart grading of fruits and 
vegetables through AI and ML

As the global food industry grapples with issues of waste reduction 
and consumer safety, AI/ML technologies are emerging as powerful 
tools for real-time freshness evaluation and smart quality grading of 
perishable products. In addition to monitoring for adulteration, AI/ML 
technologies are now being utilized for predictions of shelf-life and 
freshness assessment across perishable animal- and plant-based food 
products. These case studies demonstrate how sensor data, in combi
nation with advanced predictive models, can provide non-invasive and 
real-time measures of quality decline.

A representative example comes from a study that tackled the chal
lenge of predicting microbial spoilage in packaged minced pork. Re
searchers collected spectral and multispectral imaging data from meat 
samples stored under varying temperature and packaging conditions, as 
shown in Fig. 4 (A). Using SVM-based regression models, the system 
could predict microbial counts with RMSE as low as 0.886, demon
strating excellent quantitative forecasting. This model outperformed 
conventional microbial plate assays, offering a non-destructive, real- 
time alternative suitable for inline quality monitoring in meat process
ing plants (Fengou et al., 2020). Building on this, another study 
addressed freshness prediction in mushrooms, one of the most perish
able food items. By capturing high-resolution images of white button, 
oyster, and shiitake mushrooms at regular storage intervals, the research 
team trained multiple deep learning models, including ResNet-50, Effi
cientNet, and MobileNetV2, as shown in Fig. 4 (B). These models ach
ieved over 94 % accuracy in classifying freshness stages, aided by 
transfer learning to speed up convergence. The approach bypassed the 
need for complex chemical tests and offered a rapid, low-cost, and 
smartphone-compatible method for freshness evaluation (Javanmardi & 
Ashtiani, 2025).

Moving from fungi to fresh produce, another study introduced a 
smart packaging system for vegetables and fruits like okra, plums, and 
jujube using 3D-printed CO2-sensitive freshness labels, as shown in 
Fig. 4 (C). These labels used bromothymol blue and methyl red dyes that 
changed color based on CO2 accumulation during spoilage. Images of 
the labels were then analyzed using lightweight CNNs such as GhostNet 
and MobileNetv2, achieving accuracy above 93 % across multiple 
freshness levels. This innovation offered a fusion of chemical sensing 
and AI, presenting an affordable, scalable freshness indicator that can be 
integrated directly into packaging (T. Tang et al., 2025). Complement
ing this direction, another study aimed to grade pomegranate fruits 
based on internal acidity (pH), a critical quality metric. By analyzing 
image features like crown shape and skin texture, researchers trained 

ANN and ANFIS models to estimate internal pH values, as shown in 
Fig. 4 (D). The models reached R2 = 0.984, enabling rapid grading of 
fruits for juice, dessert, or processing purposes. Compared to conven
tional titration or destructive testing, this method provided a 
sensor-free, real-time alternative with high commercial utility (Fashi 
et al., 2020).

In conclusion, this section illustrates the increasing potential of AI/ 
ML to evaluate freshness and predict shelf-life across perishable food 
products through multimodal data, spectroscopy, imaging, and smart 
labels. CNN-based image classifiers and regression models are showing 
promise for assessing microbial spoilage and texture degradation in 
meats, mushrooms, and fruits. However, many systems were trained and 
validated under controlled conditions and with limited, homogeneous 
sample sizes. Real-world variability, including supply chains, differ
ences in packaging materials, and noise from sensors, is often unex
plored. In addition, although both smartphone-based and low-cost 
freshness indicators show considerable promise, they will still require 
additional testing for long-term durability and scalability in operational 
field conditions. Going forward, to facilitate industrial use, the next 
generation of systems should strive for cross-platform compatibility, 
real-time inference capabilities, and low calibration requirements. This 
would enable easier incorporation into cold chains or in-store 
environments.

5.3. Spoilage detection in ready-to-eat (RTE) meals through AI-ML 
models

The increasing demand for Ready-to-Eat (RTE) meals, often rich in 
nutrients and requiring minimal preparation, has led to a growing 
concern over their spoilage potential, driven by short shelf life and rapid 
microbial deterioration. In response, AI and ML-based solutions are 
transforming how spoilage in RTE meals is detected and managed.

One study investigated RTE pineapple spoilage using a combination 
of FTIR, fluorescence, and visible spectroscopy along with multispectral 
imaging, as shown in Fig. 5 (A). The goal was to predict microbial 
quality and sensory degradation (odor, texture). PLSR and SVM models 
trained on the combined dataset achieved RMSE as low as 0.63 log CFU/ 
g. In particular, FLUO sensor data combined with PLS-DA classification 
reached >85 % accuracy in odor prediction. Unlike microbial plating, 
this approach enabled real-time, non-destructive spoilage monitoring 
with high sensitivity (Manthou et al., 2020). Building on this concept, 
another study employed Selected-Ion Flow-Tube Mass Spectrometry to 
capture volatile organic compounds (VOCs) as markers of spoilage in 
fresh pork. From 37 VOCs, spoilage indicators like ethanol, benzalde
hyde, and 3-methyl-1-butanol were extracted. Using ensemble models 
including ANN and SVR, the system could predict microbial quality 
across storage durations. The ANN-based bagging ensemble out
performed others, especially when microbial load exceeded safety 
thresholds (6 log CFU/g). Compared to GC-MS or culture-based tech
niques, this volatolomic-AI hybrid offered high-throughput, real-time 
evaluation with no reagents or sample prep (L. Chen et al., 2024). 
Further emphasizing low-cost, field-ready solutions, researchers devel
oped an Arduino-based e-nose system to assess spoilage in stuffed 
mussels, a high-risk seafood RTE item. The system incorporated gas 
sensors (MQ3, MQ135, MQ9) and used image-based CNNs such as 
ResNet-50 and SqueezeNet to classify spoilage levels, as shown in Fig. 5 
(B). The model successfully identified spoilage onset by day three of 
storage, offering a portable, open-source solution that can empower 
small-scale vendors or regulatory inspectors (Yavuzer et al., 2024). 
Lastly, a study on leafy RTE vegetables like baby spinach and rocket 
utilized FTIR, VIS, and MSI in conjunction with PLSR and SVR models to 
model microbial degradation. The study highlighted that sensor-model 
pairings must be optimized per vegetable type, reinforcing the need 
for product-specific calibration. This case emphasized the importance of 
tailored AI pipelines for different RTE foods to maintain precision and 
reduce food waste (Manthou et al., 2022).
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Overall, AI-based spoilage indicator technology in RTE meals shows 
great promise due to the high-risk, short-shelf-life nature of these 
products. The reviewed literature utilizes a variety of approaches to 
measuring spoilage and understanding microbial kinetics, for example: 
vibrational spectroscopy, volatolomics, image-based learning, and e- 
nose systems, coupled with ML models such as SVR, ANN, or ensemble 
classifiers. Although these technologies generally report high accuracy, 
scalability and use in field applications is severely limited. Sample sizes 
are often small, and datasets rarely take into account the cultural in
fluences on regional cuisine, packaging technologies, or ingredient 
configurations. Additionally, most of the deployments remain pro
totypes with little acceptance in commercial RTE production environ
ments, despite some authors distributing research to explore portable 
systems (e.g., Arduino-based e-noses) or microcontroller-based pro
totypes. Future solutions should focus on the development of stan
dardized protocols, real-time monitoring of quality, and implementation 
of edge computing technologies. Co-design, with a combination of ac
ademic researchers and food industry stakeholders, will be critical for 
innovative solutions to coincide with relevant regulatory adoption. A 
comprehensive comparison of AI/ML-based food adulteration detection 

studies across coffee, milk, edible oils, honey, and turmeric was 
compiled (see Table 3). This unified dataset highlights diverse models 
such as SVM, CNN, RF, GA-PLS, and Transfer Learning integrated with 
various spectral techniques like Raman, FTIR, Vis-NIR, and MSI, show
casing high-performance metrics across multiple food matrices.

6. Challenges and possible solutions

Despite the remarkable potential of AI and machine learning in food 
spoilage detection, especially for ready-to-eat meals and perishable 
produce, several real-world challenges persist. These challenges are not 
merely technical; they reflect deep-rooted infrastructural, environ
mental, and human-system interactions that must be understood and 
addressed for AI to truly scale in food safety.

6.1. Data availability and quality

One of the most foundational challenges lies in the availability and 
reliability of data. AI models thrive on large volumes of diverse, high- 
quality, and labeled datasets. But in the case of food spoilage, such 

Fig. 5. (A) AI framework for quality assessment of ready-to-eat pineapple using multimodal sensing and statistical modeling, taken from (Manthou et al., 2020), with 
the permission of Elsevier. (B)Arduino-Based electronic nose coupled with image-based ml models to predict spoilage in stuffed mussels, taken from (Yavuzer et al., 
2024), with the permission of Springer.
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datasets are often scarce or fragmented. Collecting data that links mi
crobial spoilage levels (like total viable counts), environmental param
eters (temperature, humidity), and sensor outputs (e.g., FTIR, electronic 
nose, gas chromatography) requires access to expensive laboratory 
infrastructure and controlled conditions, resources not readily available 

across all food sectors. Additionally, existing datasets often suffer from 
inconsistencies in labeling, missing metadata, or low sample diversity, 
which reduces model robustness. Due to either the absence of clean and 
comprehensive datasets, AI systems can perform well in controlled ex
periments and poorly with real-world variance. Poor data quality can 

Table 3 
AI-ML approaches in food adulteration detection.

Ref No Food 
Type

Analytical 
Technique

AI Model Performance Metrics Advantages over Conventional Systems

Lee and Rianto (2024) Coffee E-nose DBSCAN Detected adulteration via 
aroma profiles

Non-invasive, does not require labeled 
data or expert supervision

Pradana-López et al. (2021) Coffee Image Analysis CNN + ResNet34 <1 % classification error No pre-treatment required, highly 
accurate and fast

Sagita et al. (2025) Coffee Spectroscopy LDA, ANN, RF, SVM 100 % species, 91.7 % origin Affordable, rapid, and portable 
solution

Núñez et al. (2021) Coffee HPLC-UV-FLD partial least squares regression 94.4 % classification, 2.9–3.2 % 
prediction error

Robust fingerprinting without target 
compounds

Ruttanadech et al. (2023) Coffee Spectroscopy Tree, SVM, KNN, QDA, LDA, NB Tree: 97.5 % accuracy Non-destructive, early mold detection
Pinheiro Claro Gomes et al. 

(2022)
Coffee Fluorescence 

Imaging
SVM, RF, XGBoost, CatBoost SVM: 96 % accuracy Real-time, non-destructive, high 

precision
Mohammadi et al. (2024) Tea UV–Vis PLS-LDA, PLS-SVM LDA: 98 %, SVM: 94 % Low-cost, simple, no extensive 

pretreatment
Aqeel et al. (2025) Milk HSI LDA, SVM, Logistic Regression, 

Decision Tree
Validation Accuracy: 100 % Non-destructive, high-precision 

detection for multiple adulterants
K. Goyal et al. (2024) Milk IoT Sensors Ensemble (XAI + SHAP), RF, 

LightGBM, Extra Trees
Accuracy: 96 % Portable, real-time, explainable AI for 

safety assurance
Aqeel, Sohaib, Iqbal, and Ullahd 

(2024)
Milk HSI CNN, ANN, LSTM, GRU CNN: 97 %, high scores across 

metrics
High precision, deep spectral learning

Colak et al. (2025) Milk FTIR Ensemble Bagged Trees, SIMCA, 
DD-SIMCA

Accuracy: 90.38 % Cost-effective, less preprocessing, 
highly accurate

Darvishi et al. (2025) Milk E-nose CA, DA, SVM, QDA QDA: 99.5 %, MDA: 98.5 % Non-invasive, low-cost, high-precision 
sensory detection

Lanjewar, Parab, and Kamat 
(2024)

Milk NIR KNN, RF, PCA KNN: R2 = 0.999, RF: 100 % Compact, fast, field-useable system

Yao et al. (2023) Milk FT-MIR LDA, Neural Network LDA: 100 %, NN limit: 3.27 g/ 
100g

Fast, sensitive, and quantitative 
spectral detection

Ratnasekhar et al. (2025) Oils FT-NIR FT-NIR + ML Accuracy >0.98, Sensitivity 
>98 %

Non-destructive, solvent-free, rapid 
fingerprinting

Aqeel, Sohaib, Iqbal, Rehman, 
and Rustam (2024)

Oils HSI LDA, SVM, RF, DT, KNN, NB, LR Validation Accuracy: 100 % 
(LDA)

Non-destructive, multi-class 
classification

Bavali et al. (2025) Oils LIF SVM, 1D-CNN, XGBoost SVM: 99.06 %, LOD: 0.0288 % Trace-level detection, portable setup
Zhao et al. (2022) Oils Raman 9 ML models + PCA 96.7 % classification, R2 =

0.984
Fast, solvent-free, suitable for high- 
throughput

Lim et al. (2020) Oils Fatty Acid 
Profiling

End-to-end DL, unsupervised +
supervised ML

Error <5.4 % (90th), <1.8 % 
(median)

Handles complex mixtures, 
generalizable, real-time, updatable

Aghili et al. (2022) Oils E-nose and GC- 
MS

ANN, SVM, LDA, QDA, PCA Detected a 25 % fraud level Rapid, portable, low-cost, odor-based 
profiling

C. H. Lu et al. (2023) Oils Pigment Analysis SVM Train: 100 %, Test: 94.44 % Pigment-based authenticity check, 
minimal prep

Windarsih et al. (2024) Oils FT-IR SVM, ANN, LR, kNN, Gradient 
Boosting

SVM: R2 = 0.993, RMSE =
2.719 %

Sensitive, halal-focused, easy IR- 
readout

Lanjewar, Panchbhai, and Patle 
(2024)

Honey HSI Stacking Generalization (SG), 
PCA, SVM, kNN

R2 = 0.999, RMSE = 0.493 ml Non-invasive, high-accuracy multi- 
class classification

Shehata et al. (2024) Honey Raman SORS + PLS-DA, RF, XGBoost RF: <3.5 % misclassification Non-invasive, through-container 
sensing

Razavi and Kenari (2023) Honey UV–Vis SVR, Partial Least Squares 
Regression

R2 = 0.98, RMSE = 0.97 Fast, low-cost, non-destructive

Hu et al. (2022) Honey Raman SVM, CNN, PNN CNN: 99.75 %, SVM/PNN: 100 
%

High accuracy, no preprocessing

Phillips and Abdulla (2023) Honey HSI Binary + multi-class >95 % accuracy (binary & 
multi-class)

Dataset made public, spatial info +
spectrum

Boateng et al. (2022) Honey FTIR-HATR GBDA, SVMDA, GBR Class: 0.988–0.981, R2 = 1.000 Feature selection impact studied, low 
RMSE

Calle et al. (2023) Honey Vis-NIR SVM, RF, SVR 100 % classification, R2 =

0.991
Non-destructive, botanical origin also 
detected

Mitra et al. (2023) Honey RSM NN, RF Correct prediction of simulated 
adulteration

Low-cost, fast analysis, real-world 
validation

X. Wu et al. (2022) Honey Raman CNN, PLS CNN >97 %, PLS R2 > 0.98 Better than chemometrics; high 
generalization

Brar et al. (2024) Honey Video 2D-CNN Accuracy = 0.94, Sensitivity =
0.99

No sensors/spectrometers needed, high 
scalability

Teklemariam (2024) Spices Raman + FT-IR 1D-CNN, PCA, etc. 1D-CNN accuracy highest Minimal preprocessing, handles 
nonlinear patterns, high accuracy

Lanjewar, Asolkar, et al. (2024) Spices MSI + Vis-NIR RFR, RFC, DenseNet201 R2 = 0.999, RMSE = 0.391, F1 
= 96 %

Combined MSI and spectroscopy for 
robust detection
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contribute to missed classifications, diminished trust in predictions, and 
increased instances of overfitting. The solution to this problem could be 
with the use of federated learning, which enables institutions in distinct 
regions to cooperate on training models without having to share sensi
tive data. Federated learning approaches have shown a reduction of up 
to 47 % in privacy leakage compared to traditional centralized training, 
enabling institutions to collaboratively train models without sharing 
raw data. Synthetic data generation using tools like Generative Adver
sarial Networks (GANs) can also expand the data pool. GANs have 
shown a 30–60 % improvement in model accuracy when real-world data 
is sparse or unbalanced. Most importantly, establishing collaborative, 
open-access data repositories backed by government or research con
sortia can create a standardized baseline for model training and 
benchmarking (Gbashi & Njobeh, 2024; Rahman et al., 2024).

6.2. Generalizability across geographies and food types

A further important barrier is that models trained for one geography 
or food product typically do not generalize well to another. This occurs 
as spoilage signatures, such as microbial profiles or volatile organic 
compounds, can vary significantly by many factors, including climate 
zone, industry supply chain practices, and packaging types. Recent 
evaluations show that ML models trained in temperate environments 
experienced a 15–30 % drop in classification accuracy when tested in 
tropical or low-resource settings. Such a lack of generalizability creates 
barriers to scale and introduces operational risk (Jadhav et al., 2024, pp. 
4989–4995). A promising solution is the use of domain adaptation 
techniques in ML that help models adjust to new data distributions. 
Additionally, building modular AI architectures that allow partial 
retraining or localization using small new datasets can enhance flexi
bility. Developing regionally tuned multi-task learning frameworks that 
share low-level features across foods while learning high-level differ
ences specific to geography or commodity can also offer a more scalable 
path forward (Castano-Duque et al., 2022; Q. Tang et al., 2023).

6.3. Interpretability of complex ML models

Although deep learning models (such as CNNs) or ensemble methods 
(like RF) provide better performance in spoilage detection tasks, they 
typically operate as “black boxes.” In other words, they predict spoilage 
correctly without providing a transparent explanation for classifying a 
food sample as spoiled. This lack of interpretability poses a serious 
barrier in food safety applications, where decisions must be explainable 
to regulators, auditors, and even consumers. When a prediction cannot 
be explained, especially a false positive that leads to product rejection or 
recall, it becomes difficult to build trust in AI-driven decisions. To 
improve transparency, explainable AI (XAI) frameworks such as SHAP 
and LIME should be integrated. For instance, SHAP-based interpret
ability added to ML pipelines in recent food adulteration studies 
improved user trust by approximately 28 %, as reported in user feedback 
surveys. Reporting uncertainty estimates and confidence scores along
side predictions further enhances decision-making and reduces the risk 
of false positives (ElShawi et al., 2021; Gambo et al., 2024; Oldroyd 
et al., 2021).

6.4. Cost and infrastructure constraints in rural or developing regions

Finally, one of the most practical limitations is the high cost and 
infrastructural requirements for deploying AI solutions in rural or 
resource-limited settings. Advanced models often rely on high- 
resolution imaging systems, cloud computing for real-time analytics, 
and stable power and internet, conditions that may not be met in many 
parts of the world, particularly in small-scale farms or food markets. This 
severely limits the democratization of AI-driven food safety. The 
consequence is a growing digital divide where only industrial players 
can benefit from predictive food quality systems, while smallholders and 

informal vendors continue to rely on manual inspection or unverified 
shelf-life labels. To bridge this gap, lightweight AI models deployed on 
edge devices (e.g., smartphones, Raspberry Pi, or Arduino-based sys
tems) have been shown to reduce costs by over 80 % while maintaining 
above 92 % accuracy for tasks such as spoilage detection in stuffed 
mussels. Encouraging public-private partnerships to subsidize these 
tools, along with training programs for local vendors, can enable 
widespread deployment. Integration of AI with existing rural supply 
chain programs (e.g., via cooperatives or government food safety mis
sions) will be key to achieving scale and equity (Yavuzer et al., 2024; 
Lins et al., 2021; C. Wu et al., 2023).

6.5. Regulatory and standardization challenges

A considerable hurdle faced in AI implementation for food safety is 
compliance with existing regulatory requirements. AI-based decisions 
must conform to food safety regulations set forth by regulatory organi
zations such as EFSA and FDA. Currently, the absence of standardized 
validation protocols for AI models across jurisdictions creates uncer
tainty and legal barriers. The necessity for global cooperation to stan
dardize testing protocols, performance expectations, and audit processes 
cannot be overstated. This would facilitate the adoption of AI and foster 
trust in all actors in the food system (Abid et al., 2024; Dhal & Kar, 
2025b).

6.6. Human-system integration and capacity building

While there are technological obstacles, we still need to address 
human factors in more depth. Even with the technologies available, we 
are still left with the training of the intended end-users/first responders 
(food handlers, inspectors, quality control personnel, etc.) in how to use 
the technology, which must be done within the context of already 
existing inspection systems. Recent deployments of AI-powered food 
safety systems have demonstrated that capacity-building initiatives can 
increase the likelihood of making accurate interpretations from AI out
puts by 35–40 %, which can increase compliance and enable fewer recall 
events [97]. Encouragement of training programs should necessarily 
include training on the operation of AI tools, along with interpreting 
confidence scores and being able to circumvent these outputs, at times, 
doing so is vital. Embedding these educational programs within national 
food safety missions can ensure long-term success. Together, these 
multifaceted challenges and their corresponding solutions lay the 
groundwork for scalable, explainable, and human-aligned AI systems in 
global food safety applications (Nazaretsky et al., 2022).

7. Conclusion and future direction

AI and ML are moving from futuristic tools to practical tools. They 
are now changing the ways we detect and prevent food adulteration, 
spoilage, and contamination. AI-enabled systems have shown the po
tential to provide real-time, noninvasive, and scalable solutions to food 
safety problems, whether it be milk, spices, meat, or prepared meals. 
However, as emphasized in Section 6, several core challenges must be 
addressed to fully realize the potential of AI in food safety: 

• Data availability and quality: Quality and availability of data: 
Future research should focus on developing high-quality, open-ac
cess, and representative datasets from different geographic regions. 
Initiatives could include frameworks for collaborative data-sharing 
using federated learning and synthetic data production methods.

• Model generalizability across regions and food types: The crea
tion of adaptive and modular AI systems will be beneficial in sup
porting fine-tuning with local datasets of limited sizes. Research into 
the development of multi-task learning and domain adaptation ap
proaches will increase transferability.
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• Interpretability and trust: Incorporation of explainable AI tech
niques (ex: SHAP, LIME) into prediction pipelines and demonstrating 
their value through user-centered research may help to improve trust 
from regulators and stakeholders. In the future, it would be useful for 
tools to provide uncertainty estimates to enable decision-making.

• Infrastructure and cost constraints: Affordable edge-AI options 
suitable for rural or under-resourced areas deserve study and pro
totyping. AI-enabled food safety should be made accessible to 
anyone via the combination of featherweight models and inexpen
sive sensors, mobile applications, or IoT devices.

Moreover, adopting long-term favourable implementation of these 
solutions will require regulatory coordination and human-system 
interface integration, as mentioned previously. Future work will need 
to work with regulatory agencies such as EFSA and the FDA to develop 
standards for AI validation. In addition to these, several emerging trends 
hold strong potential for future research and real-world deployment: 

• AI for Pathogen Detection: AI is developing rapidly in the use of 
biosensors and imaging for the detection of microbial pathogens in 
food. ML models can facilitate the detection/classification of bacte
rial colonies and predict the occurrence of pathogenic organisms 
through time series data from the sensor or predicted by measured 
spectroscopic features.

• Zero-Shot and Few-Shot Learning: Zero-Shot and Few-Shot 
Learning: supervised models require large, labeled datasets; how
ever, zero-shot and few-shot learning methods can generalize to new 
food types or contaminants with little beforehand data. These 
methods could alleviate the burden of data collection and increase 
flexibility in changing environments in food.

• Blockchain þ AI for Traceability: Blockchain + Artificial Intelli
gence (AI) for Traceability: Utilizing blockchain’s immutable ledger 
in conjunction with AI’s predictive capabilities would enable end-to- 
end traceability and fraud detection in food supply chains. AI could 
detect anomalies, substantiate the authenticity of products, and 
disclose previously distributed data from the chains found on a 
distributed ledger.

By systematically addressing current barriers and exploring these 
future directions, AI can become a more trusted, inclusive, and adaptive 
technology for safeguarding food systems worldwide. Strategic part
nerships between academia, regulatory agencies, and industry will be 
critical in transforming these innovations into operational food safety 
safeguards.
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