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Abstract

Integrating Industry 4.0 technologies into food manufacturing processes transforms tradi-
tional quality management practices. This study aims to understand how these technologies
are applied across managerial quality functions in the food industry. A systematic liter-
ature review was conducted using the Scopus and Web of Science databases, selecting
69 peer-reviewed articles. The analysis identified quality control (QC) and quality assur-
ance (QA) as the most frequently addressed functions. Sensor technology was the most
cited, followed by blockchain and artificial intelligence, mainly supporting food safety,
process monitoring, and traceability. In contrast, quality design (QD), quality improvement
(QI), and quality policy and strategy (QPS) were underrepresented, revealing a gap in
strategic and innovation-focused applications. Based on these insights, the Food Quality
Management 4.0 (FQM 4.0) framework was developed, mapping the relationship between
Industry 4.0 technologies and the five managerial quality functions, with food safety posi-
tioned as a transversal dimension. The framework contributes to academia and industry
by offering a structured view of technological integration in food quality management and
identifying future research and implementation directions. This study highlights the need
for broader adoption of advanced technologies to improve transparency, responsiveness,
and overall quality performance in the food sector.

Keywords: Quality 4.0; Industry 4.0; advanced manufacturing; food manufacturing;
digital technologies

1. Introduction

One of the major challenges in the food industry is ensuring product safety and quality,
making food quality management (FQM) a critical activity [1,2]. Traditionally, quality
assurance and control are central to quality systems in this sector [2,3]. However, a specific
department should address quality systemically throughout the organization [3]. The
realization of food quality is a complex system dependent on food and human behavior.
For a profound analysis of this system, it is important to integrate theories from both
technological and managerial disciplines. In this context, the food quality management
model [4] was proposed as an integrated concept that addresses this holistic analysis.

This model structures quality management into five managerial functions—(i) quality
design (QD), (ii) quality control (QC), (iii) quality improvement (QI), (iv) quality assurance
(QA), and (v) quality policy and strategy (QPS)—highlighting the complexity of effectively
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managing food quality at all levels. Despite its conceptual clarity, the holistic implementa-
tion of these functions in the food industry remains limited. One barrier is the intensive
use of data, analytical tools, and human resources required. Industry 4.0 technologies
offer new opportunities to support these activities, becoming a growing field of interest.
According to [5], the increase in automation and control in food processing is often driven
by external factors such as new safety regulations that demand specific adaptations across
food segments.

Moreover, food manufacturers are under increasing pressure to innovate, enhance
performance, and adopt sustainable technologies [6]. While the COVID-19 pandemic
accelerated digital transformation across the food supply chain, low technological readiness
still hampers progress [6,7]. Compared to other sectors, the food industry lags in adopting
Industry 4.0 solutions, remaining in the early stages of digitalization [8].

In this context, a literature review introduced the concept of Quality 4.0 in the food
industry [9], focusing specifically on the automation and digitalization of food quality
analyses to ensure speed, objectivity, and reliability—an approach aligned with the QC
function of the food quality management model [4]. While Dias et al. [3] also conceptu-
alized Quality 4.0, their analysis did not target a specific production sector. Two further
reviews [6,10] explored Industry 4.0 technologies within the food industry; however, they
did not elucidate the mechanisms by which these technologies support quality manage-
ment. Drawing from this body of knowledge, Industry 4.0 technologies can be organized
into four categories: (i) connectivity and integration, including cybersecurity, blockchain,
and the Internet of Things (IoT); (ii) Cybernetics, covering digitalization and automation
through smart sensors, robotics, artificial intelligence (AI), and machine learning (ML);
(iii) data management, with big data and cloud technologies; (iv) simulation and extended
reality, such as digital twins and cyber-physical systems. This article builds upon these con-
tributions by expanding the scope beyond QC to encompass all five quality management
functions. This represents a novel contribution, as it broadens the understanding of the
subject by proposing an analysis of how activities related to quality management functions
are being transformed through integration with Industry 4.0-enabling technologies.

Given the wide range of available technologies, there is an opportunity to understand
how these solutions can support food quality management. However, there is still a lack
of structured studies connecting specific Industry 4.0 technologies to the five managerial
quality functions of food manufacturing. This gap limits the systemic understanding of
how digital transformation can enhance quality management in this sector.

Therefore, through a systematic literature review, this study aims to analyze the state
of the art regarding how Industry 4.0 technologies support the five managerial functions of
food quality management in the food manufacturing process. The analysis of the review’s
findings supports the proposed Food Quality Management 4.0 (FQM 4.0) framework.
This framework evolves from a previously proposed framework in the literature [4] and
illustrates which technologies are being employed to execute activities within each quality
managerial function.

The first part of the article presents the quality managerial functions addressed in the
selected studies and the Industry 4.0 technologies that have already been used or have the
potential to be used to support these functions’ activities. Next, the FQM 4.0 framework is
proposed. This paper does not aim to explore each implementation in depth but to provide
an overview.
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2. Materials and Methods
2.1. Study Design and Systematic Review Protocol

The study was motivated by the increasing importance of digital transformation
in food production and the lack of integrative models linking Industry 4.0 technologies
with food quality management practices. Based on this context, two research questions
guided this study: (RQ1) Which quality managerial functions have been most explored in
food manufacturing using Industry 4.0 technologies? (RQ2) How are digital technologies
applied to support food quality management?

To conduct this systematic literature review, PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) guidelines were adopted [11].

Based on the analysis of the scientific literature, we identify the current state of
knowledge and propose a conceptual framework that integrates technologies with quality
functions in the food industry.

2.2. Search Strategy

The databases surveyed were Scopus and Web of Science. The choice was restricted to
these two databases since they host all relevant JCR-indexed journals in the field of quality
management. Keywords used in the search were as follows: ((“big data” OR “machine
learning” OR “artificial intelligence” OR “cloud” OR “smart sensor*” OR “robotic*” OR
“Internet of Things” OR “blockchain*” OR “cybersecurity” OR “digital twin*” OR “cyber-
physical system*” OR “Industry 4.0” OR “advanced manufactur*” OR “automation*” OR
“digitalization*” OR “digital transformation*” OR “intelligent manufactur*” OR “smart
manufactur*” OR “smart factor*” OR “digital technolog*” OR “fourth industrial revolu-
tion”) AND (“food”) AND (“food quality” OR “food design” OR “food improvement” OR
“food control” OR “food assurance” OR “food policy” OR “food strategy” OR “food quality
management” OR “food management” OR “quality strategy” OR “quality policy” OR
“quality control” OR “quality assurance” OR “quality design” OR “quality improvement”)),
provided it was presented in the article’s title, abstract, or keywords. Boolean operators
“AND” and “OR” combined word groups in the search. The search was carried out between
on July 2023.

2.3. Study Selection

The articles were imported into Mendeley software v1.19.8 to remove duplicates. The
inclusion criteria included (i) articles and reviews published in English in scientific journals
and (ii) articles published since 2011, provided that this was the year in which the term
“Industry 4.0” first appeared in a publication to describe the widespread integration of
information and communication technology in industrial manufacturing [8]. The exclusion
criteria were as follows: (i) articles that did not address any of the five quality managerial
functions, (ii) articles that did not address quality in food manufacturing, (iii) articles
that had to be paid to be read, (iv) articles that did not frequently mention Industry 4.0
technologies according to a predefined threshold.

Food manufacturing, as defined herein, encompasses only those stages executed by
and impacting the operations of food industries, including but not limited to controlled-
environment storage, selection, milling, drying, and packaging [12]. Consequently, the
framework concentrates on the technological function of the techno-managerial model,
defined as the “processing of food materials to food products” [4]. The scope excludes pro-
cesses undertaken by other actors within the food system, which the Food and Agriculture
Organization defines as food production, distribution, consumption, and disposal [13].

The selection process was independently conducted by six researchers who assessed
the suitability of article titles and abstracts. The authors’ critical evaluation was based
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on the two questions presented in Section 2.1 to guide the exclusion of articles. The
research team periodically convened during the selection process to resolve uncertainties
and prevent discrepancies.

2.4. Data Extraction

Two independent authors (F.A.P.P. and I.C.B.) extracted and summarized the following
data: (i) authors name, (ii) year of publication, (iii) location, (iv) article type, (v) food
industry sector, (vi) quality managerial function addressed (based on the FOM model [4]),
(vii) Industry 4.0 technologies discussed. Quantitative metrics (e.g., frequency of terms and
technologies) were also used to support the qualitative insights. Microsoft Excel was used
to compile the recorded data for additional analysis.

2.5. Data Synthesis and Data Analysis

A comprehensive review of the documents revealed numerous examples of activities
linked to various quality functions supported by digital technologies. It was observed
that explicit mentions of specific quality functions, such as quality design, quality control,
quality improvement, quality assurance, and quality policy and strategy, were frequently
absent. Consequently, to accurately categorize articles within each managerial quality
function, we aligned the examples provided with the keywords or related terms listed in
Table 1 [2/4].

Table 1. Aims and keywords related to each quality managerial function.

Quality Managerial Function

Aims Keywords or Related Terms

Process development
Product development
New material development
Quality Function Deployment (QFD)

Aims to incorporate quality into
activities related to developing
processes, products, or materials.

Quality Design These activities must be related to Failure Mo.de and Effegts Analysis (FMEA)
- . Design of Experiments (DoE)
customers’ interests regarding a . .
. . Customer satisfaction
safer and higher quality product. .
Customer expectation
Customer dissatisfaction
Statistical process control
Acceptance sampling
Aims to ensure that the variation in Visual inspection
. New analysis method
products and processes remains
g . . New sensor proposal
within a certain tolerance that is Inspection
Quality Control considered acceptable. Thus, pecto
. . e . Classification
compliance with specifications is Fraud
assessed, and, where appropriate, L
: . Prediction
interventions are made. .
Monitoring
Assessment
Detection

Quality Improvement

Aims to improve the quality system
with a focus on causes and
solutions through the change of
people, processes, and resources to
bring them to a higher level of
quality, working with the reduction
in tolerance in the
production process.

Waste reduction
Continuous improvement
Lean Manufacturing
Process variability reduction
Six Sigma
Lean sigma
Metrics dashboards
Performance enhancement sensor
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Table 1. Cont.

Quality Managerial Function Aims Keywords or Related Terms

Quality Assurance

Quality management programs
Hazard Analysis and Critical Control Points
(HACCP)

International Organization for
Standardization (ISO)

British Retail Consortium (BRC)
International Featured Standards (IFS)
Quality check
Quality system
Traceability
Quality Audit
Contract compliance
Safety hazards
Certification

Aims to control the quality system,
its methods, and evaluations and to
assure consumers and customers
that the quality requirements have
been met.

Quality Policy and Strategy

Total quality management
Customer focus
Strategic analysis
Strategic partnership
Food safety strategy
Organizational culture
Quality cost analysis
Quality Strategy Development
Quality policy

Aims to define long-term food
quality objectives and targets and
how to achieve them through the

quality system.

Source: [2,4].

For instance, if a document described developing a new quality process leveraging
digital technology for its execution, the example was associated with the quality design
managerial function. A pertinent illustration from [14] involved using digital technology to
develop a new quality process for cooling horticultural products. Although “quality design”
was not explicitly stated, this activity was attributed to that function due to its alignment
with the established criteria. After initial categorization, the findings were reviewed by
one author (FA.PP) to ensure the accurate assignment of examples and prevent double-
counting in the review’s indicators. Examples of digital technology use in supporting
quality activities are detailed in Tables 51-S5 in the Supplementary Materials and will be
further discussed in Section 3.2.

After categorizing the articles into managerial quality functions, we performed a
qualitative content analysis technique using NVivo software (version 14). This analysis
aimed to mine the most frequently mentioned Industry 4.0 technologies (Table 2) within
each quality function. We used NVivo's text search queries, including derived terms, and
sorted the results in descending order, prioritizing articles with the highest frequency of
technology mentions. To ensure the significance of our findings, we included articles for
discussion in each managerial function only if they mentioned at least 1 of the 11 enabling
technologies 50 times or more. This threshold was established based on the corpus’ size and
characteristics, aligning with common practices in content analysis and text mining [6,15],
where occurrences greater than 50 are considered significant. This rigorous frequency
criterion ensured that only highly representative terms were included in the analysis,
enhancing our findings’ consistency and robustness.
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Table 2. Enabling technologies of Industry 4.0.

Industry 4.0 .
Category Technologies Definition

Sensors are transducers that measure physical and chemical quantities and
convert them into electrical signals. They are the gateway to enabling

Industry 4.0, ensuring better food quality and safety through low-cost, fast,

reliable, and cost-effective detection methods [6,15]. Smart sensors can be

Cybernetics Smart Sensor classified into physical sensors, which measure temperature, humidity, and
pressure in the food or vibration during transportation; chemical sensors that
measure changes in pH and variations in gas concentrations (such as oxygen

and carbon dioxide); and biological sensors that mimic the senses of the
human body such as smell, sight, and taste [6,15,16].

Al technology is often associated with sensors. Al involves the development
of algorithms and computer models that allow machines to process and
analyze a large volume of data, identify patterns and relationships, and make

Cybernetics IntelllAi rtelrf:ia(l)r Al predictions or decisions based on these analyses [17]. This technology is thus
& said to simulate human thinking and intelligence, learning ability, and
knowledge storage [10,18,19], allowing answers to complex questions to be
discovered [20].
ML is a subcategory of Al [18,20-22]. This technology relates to developing
and applying algorithms that can learn the patterns present in data and
convert empirical data, using it to make classifications and
Cvbernetics Machine predictions [21-23]. Examples of ML algorithms include artificial neural
y Learning or ML  network (ANN), k-nearest neighbor (k-NN), support vector machine (SVM),
decision trees (DTr), random forest (RF), and genetic algorithms. Deep
learning is a subdivision of ML used for pattern recognition and
decision-making [6,18,20].
Cvbernetics Robotics Robotics is considered another sub-area of Al [20]. Autonomous robots have
y been reported to provide skilled labor and reduce production costs [6].
Decision-making based on analyzing a massive amount of data generated by
Data . . . C D . .
Management Big Data operations, which undergo the digitization and automation of their processes,
& is related to big data technology [6,24].
Data Cloud Cloud is understood as a digital infrastructure used to store large amounts of
Management data generated, whether personal or corporate [6].
IoT, considered an essential dimension of Industry 4.0 [3], allows humans,
objects, and things to connect and communicate at any time and anywhere.
. IoT systems consist of a network of physical objects with embedded
Connectivity and Internet of hnol . . th their i )
Integra tion Things or IoT technology to detect, communicate, and interact with their internal states or
the external environment [25]. In the manufacturing environment, it enables
data transfer between interconnected computer devices and industrial
machinery [6].
.. Blockchain is an inviolable, transparent, decentralized, and, therefore, reliable
Connectivity and . ) . . .
X Blockchain technology that stores each environ transaction using cryptographic
Integration
hashes [26,27].
Connectivity and . Cybersecurity is the process and technology that support protecting
X Cybersecurity . .
Integration information and technology systems [6].
Simulation and Digital Twins DT technology is a virtual prqduct, process, or deylce representatlon. A twin
. connects to the real world via sensors and provides real-time data to the
Extended Reality or DT

virtual twin [6,14,28].

Simulation and Cyber-physical ~ Cyber-physical systems have a strong relationship with DT, IoT, and robotics,
Extended Reality systems as they integrates the physical and virtual worlds [6].
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While presented as distinct categories in Table 2, these technologies frequently interre-
late. For example, smart sensors (Cybernetics) often combine with the Internet of Things
(IoT) (connectivity and integration) to facilitate data transfer across connected networks.
Similarly, sensors (Cybernetics) collect large volumes of data that are then analyzed using
Al and ML tools (Cybernetics) for big data analytics (data management).

2.6. Framework Development and Validation

Building on the insights from our systematic review, we developed the Food Quality
Management 4.0 (FQM 4.0) framework. This framework conceptually links quality man-
agerial functions with the application of digital technologies. It synthesizes the current
scientific knowledge, highlights technology—function relationships, and pinpoints gaps
and opportunities for future research and industrial practice. To validate the framework,
we surveyed with 30 food industries in Brazil.

3. Results
3.1. Search and Characteristics of Studies

A total of 1519 articles were initially identified across the databases, and 321 duplicates
were removed. After applying the exclusion criteria, 784 articles were excluded for not
addressing any of the five quality managerial functions or not focusing on quality in food
manufacturing. Additionally, 56 articles were excluded due to not being freely available,
and 289 articles were eliminated because their mention of digital technologies did not meet
the established threshold. Ultimately, 69 articles were synthesized and analyzed in this
review (Figure 1).

| Identification of studies via databases

Y
g
E Records identified from: Records removed before screemng:
= Scopus (n=1020) > Duplicate records removed in
g Web of Saence (n=499) Mendeley software (n=321)
=

'

—

Recoriaaassiad Records excluded:

(n=1198) Arfidles that did not address
any of the five quality
meanagerial functions or

- quality in food
g manufacturing (Mendeley
=
g software)
- — '? 1/
Articles not available without
payment (n = 56)
Articles that did not meet the
established threshold (NVivo
_J sottware) (n =289)
Y 3
i Studies included in review
= (n=69)
£
—
S

Figure 1. PRISMA flowchart illustrating the study selection process.
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The analysis of the 69 articles selected showed that 55% are literature reviews, and
80% have been published since 2020, indicating a growing interest in using 4.0 technologies
to support food quality activities. The high number of systematic reviews may suggest
the nascent maturity of food industries in practically implementing digital technologies
for quality-related tasks. This aligns with the observation that new propositions (45% of
the documents) are predominantly theoretical or at a laboratory scale, a point that will be
further explored in Section 4.1.

An analysis of the most researched food industry sectors and countries with the
most publications revealed that the Asian continent stands out, with China leading with
14 publications and India with 8. The sectors most frequently highlighted for their use of
digital technologies in quality activities within these studies were horticultural products
(fruits, vegetables, and their derivatives) with eight publications; animal products (meat
and fish) with five publications; and diverse sectors such as tea, wheat flour, rice, spices,
cocoa and chocolate, alcoholic beverages, cereals, and grains, cited in six publications.
Other prominent countries include Canada, which has five publications, though only one
specifically details the use of digital technologies in agricultural products [19]. Spain, the
UK, and France each contributed three documents, with findings in the farming and meat
sectors. These highly researched sectors indicate that developed countries are playing a
leading role in this research area and that primary products, particularly those of animal
and plant origin, are receiving the most attention.

3.2. Quality Managerial Functions Supported by Industry 4.0 Technologies

Figure 2 illustrates the frequency of citation of digital technologies employed to
support the activities within each managerial quality function. This figure surpasses the
69 articles cited in more than one enabling technology of Industry 4.0. This phenomenon
may be attributed to the substantial number of literature reviews that presented illustrative
applications of these technologies across various activities of food management. The
“sensor” or “smart sensor” technology was the most frequently cited, notably mentioned
in 39% of the examples. This prevalence is anticipated, considering this technology’s
comparatively lower level of innovation and its frequent characterization as the gateway of
Industry 4.0. Blockchain (23%), Al (14%), and IoT (9%) technologies were the second, third,
and fourth most cited technologies, respectively. DT (5%), ML (4%), Big Data (3%), and
Robotics (2%) received considerably fewer mentions. In the case of ML, this low incidence
may be correlated with the observation that the term “machine learning” is less frequently
cited than its constituent tools, such as k-NN, SVM, and ANN.

Cloud and cybersecurity technologies were not mentioned in any of the 69 articles.
The lack of relevant mentions of these terms indicates that no research has been dedicated
to these technologies that directly addresses quality in food manufacturing. The research
focuses more on data collection and analysis than data storage or security. However, it
is worth emphasizing the importance of these technologies for the food industry since a
huge amount of data circulating on the web could lead to leaks of recipes or consumer data
and would be detrimental to companies [6]. Cyber-physical systems technology was also
not mentioned in the selected papers. Since DT, IoT, and robotics are not widespread like
the others, cyber-physical systems, which combine these technologies, are still not being
addressed in a representative way.

In regard to the managerial quality functions, QC was the most researched by the
authors, with its activities being cited in 51% of the examples, followed by QA with 23%
of the examples, QI with 11%, QPS with 10% of examples, and QD with only 4% of the
examples. Based on the digital technologies categories [3], it can be said that QD and QI
are mostly related to Cybernetics. QC is also related to Cybernetics, covering intelligent
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Frequency of citation of digital technologies
5]

Quality
Design

sensors and sensor technologies, robotics, Al, and ML. Additionally, this quality function
presents examples of the connectivity and integration category. Finally, QA and QPS are
quality managerial functions mostly associated with connectivity and integration, which
address blockchain and IoT technologies.

Digital Twins

= Blockehain

B Internet of things

Il Robotics

i Smart sensor
Artificial Intelligence

% Machine Learning

m Big Data
4

Y

Quality Quality Quality Quality
Improvement Assurance Policy and Strategy Control
Quality Managerial functions

Figure 2. Frequency of citation of digital technologies divided by each managerial quality function.

3.2.1. Quality Design

The application examples of digital technologies within quality design activities were
categorized into three clusters (Table S1 in the Supplementary Materials): process develop-
ment, product development, and new material development. Notably, no tools explicitly
related to quality-oriented design, such as Quality Function Deployment (QFD), Failure
Mode and Effects Analysis (FMEA), or Design of Experiments (DoE), were cited within
the reviewed articles. Among the identified application examples supporting decision-
making in QD are using sensors and smart sensors in conjunction with DT technology
to develop novel quality processes [14] and simulations enabling enhanced responsive-
ness to customer quality requirements during product launch [28]. The application of Al
was cited in support of pre-formulation studies [9], analyzing consumer information to
support product development, and identifying materials capable of extending product
shelf life [17]. This experiential learning, facilitated through simulated scenarios, prepares
project stakeholders for real-world situations related to professional practice, enabling the
development of interpersonal communication skills in project management within a safe,
simulated environment [29]. It is pertinent to note that all the surveyed articles were of a
review nature, with no novel methodologies proposed to enhance quality design activities.

3.2.2. Quality Control

Activities related to quality control were identified in 51% of the articles selected. Eight
technologies were mentioned to support quality control decision-making. The Cybernetics
category was the most prominent since sensors, Al, and ML were most frequently men-
tioned, followed by the connectivity and integration category, covered by the application of
blockchain and IoT technologies. This category’s activities were divided into nine clusters
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(Table S2 in the Supplementary Materials): classification, detection, monitoring, inspection,
fraud prevention, prediction, assessment, new analysis method, and new sensor proposal.

Traditionally, food analysis has been determined using various destructive and time-
consuming approaches with modest analytical performance. This highlights the urgent
need to develop refined techniques connected to automated processes [9,30]. The relevant
point is that many of the techniques and methods presented are potentially interesting in
food manufacturing but are still only a reality at a laboratory scale [9].

Of the 46 articles allocated to quality control (QC), 50% reported activities supporting
decision-making during product and process monitoring, and 46% cited detection activities,
the most frequently mentioned clusters. Subsequently, activities related to fraud prevention
(37%), assessment (35%), and classification (30%) were cited.

Monitoring entails the systematic tracking and collection of data over time. This process
facilitates the measurement of performance against established targets and standards, as
well as the identification of deviations [31]. The implementation of smart sensors for
process monitoring was widely documented [32,33], with occasional instances of their
integration alongside technologies such as IoT, Al, and blockchain. Illustrative examples
encompass sensing to track and support decision-making concerning processes and their
critical parameters (such as temperature, humidity, gas concentration, aroma, etc.) in the
production of fresh produce, fruits, and vegetables [25,34,35] and in the monitoring of
color in meats, the fatty acid composition of milk, and the determination of trans fatty
acids in edible oils [23]. In another instance, a synergistic combination of blockchain and
sensor technologies was developed for monitoring vital process parameters during the cold
storage of frozen seafood [36] and for the provision of information regarding anomalous
conditions of monitored food items to each authorized stakeholder within the supply
chain, for corrective action implementation [37]. Integrating Al with other technologies
is contingent upon the objectives of researchers and practitioners and the availability of
pertinent data. To this end, a step-by-step procedure was proposed [18] to guide the
integration process preceding the application of AI models for monitoring and inspection
activities in the food industry.

Quality detection involves the identification of atypical behavior in comparison to
normal operating data, indicating non-conformities [38]. Smart sensors [39-42], Al [43,44],
and ML were the technologies most frequently employed in this activity. The integra-
tion of Al with sensors facilitates the detection of anomalies during the manufacturing
process and enables the rectification of identified issues [16,23,45]. The application of
e-noses has been extensively explored for the detection of contaminants in vegetable oils,
grains, and spices [46], the adulteration of commodity foods [47], food-borne bacterial
pathogens [16,48], toxins [15], and spoilage and fungal growth [45]. The detection of flaws
during the fermentation of alcoholic beverages [49] was also noted. The principal attributes
of e-noses include their economic viability, portability, ease of operation, non-invasive na-
ture, and capacity for rapid analysis. Despite their increasing application, their widespread
adoption in routine food industry practices remains limited [16,46,47].

Fraud prevention represents another significant category pertinent to quality control.
Examples involving the utilization of smart sensors, Al, and blockchain were cited for
classifying adulteration in powders and cereals [21], to rapidly detect subtle differences in
aromatic profiles in coffee and pepper samples [50], and to ensure the transparency and
authenticity of ingredients and the beer-making process [51]. The prevention of food adul-
teration, which predominantly occurs in high-value commodities, was a recurring theme in
the articles in this section [19,52]. This constitutes an illicit practice characterized by inten-
tionally adding physical substances to food products to reduce costs and augment sales
profits. Related terms include “substitution,” which denotes adulteration with products of
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the same type, albeit not identical or of inferior quality, and “counterfeiting,” which refers
to the sale of products that mimic genuine food items. Owing to the salience of this issue,
there is an increasing demand for the development of precise and sensitive methodologies
for identifying subtle and sophisticated adulteration in food products [21,44,47].

In quality control assessment, smart sensor technology was the most frequently cited.
Specific examples involving the use of DT and blockchain were noted, such as the appli-
cation of DT to support the verification of quality degradation in agricultural products
stored in locations with limited accessibility for standard sensors [14], the integration of
quality assessment smart contracts and models for the automatic quality assessment of
fruit juice samples collected from different production stages [53], and the identification of
lower quality shrimp products using blockchain technology [54].

Finally, smart sensors, Al, and ML technologies were employed within the classifica-
tion category. This is exemplified by the application of deep learning for fruit classifica-
tion [20], e-noses for the discrimination of different types of meat and fish samples [55],
and tea sample flavors [56], ML methods for classifying bovine and ovine parenchymal or-
gans [57] and identifying wheat classes [22], and the utilization of particle sensors combined
with ML tools for food freshness classification [58].

The clusters of inspection, prediction, new analysis, and new sensor development [59—62]
exhibited lower representation, and the application examples of digital technologies in the
execution of these activities can be verified in Table S2 in the Supplementary Materials.

3.2.3. Quality Improvement

Concerning quality improvement, the utilization of digital technologies to support ac-
tivities related to this managerial function was exemplified in 10 articles, of which 50% cited
the performance enhancement for sensors, 40% mentioned the continuous improvement
of processes, 30% reported the reduction in process variability, and a mere 10% referred
to waste reduction (Table S3 in the Supplementary Materials). Seven distinct technologies
were mentioned in support of these activities.

The cluster of performance enhancement for sensors responsible for collecting data from
food products and industrial processes presented examples involving the application
of smart sensors and ML. Proposals addressing enhanced meat quality control aim to
mitigate the impacts of sensor drift on smart sensors’ performance. Sensor drift occurs
when gas sensors, such as e-noses, are adversely affected by other gases sharing com-
mon chemical properties and by environmental factors such as humidity, pressure, and
temperature, impacting their accuracy and stability. ML techniques are implemented to
compensate for these shortcomings [63-65]. Another challenge smart sensors face is low
sensitivity and selectivity, or unsatisfactory levels of automation, in detecting ammonia, a
compound indicative of food spoilage. To this end, gas sensor improvements have been
proposed [66,67].

The cluster of continuous improvement reported the application of six digital technolo-
gies, including smart sensors and DT, to visualize the evolution of a process without the
necessity of halting equipment or physically accessing the system to examine its state [28];
a smart IoT-based control system to provide reliable data from a modified cold storage
room and issue necessary alerts in case of emergency based on real-time data analysis of
post-harvest fruit quality [68]; and big data analysis by integrated systems to mitigate the
potential for human error, thereby contributing to reduced costs and time and enhanced
effectiveness and efficiency within the coffee supply [69]. The application of autonomous
robots has been reported to provide skilled labor and reduce production costs in processes
requiring material uniformity, such as packaging and palletizing. This is attributed to
the heterogeneous formats of food products, which present challenges for their integra-
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tion into more complex processes [6]. Furthermore, robotics has been implemented in
food fractionation processes [70] to promote continuous improvement and a reduction in
process variability.

The process variability reduction cluster explored the implementation of Al combined
with big data to optimize batch blending processes and to consistently maintain food
in optimum storage conditions [9]. Regarding the waste reduction category, DTs were
mentioned for monitoring and predicting food processing stages, thereby contributing to
optimizing the uniformity, performance, and sustainability of processes [28]. Only one
article [9] mentioned the term “lean” concerning waste reduction. Notably, no article
directly mentioned the implementation of a Six Sigma program as an example of process
variability reduction.

3.2.4. Quality Assurance

A total of 21 articles provided examples of quality assurance activities wherein
decision-making was supported by five digital technologies (Table 54 in the Supplementary
Materials). The QA activities were categorized into eight clusters: traceability (76%), quality
audit (38%), quality system (24%), quality check (19%), quality management program (9%),
safety hazards (5%), contract compliance (5%), and certification (5%).

Closely aligned with enhancing the traceability of the supply chain, wherein food man-
ufacturing constitutes a critical link, blockchain and IoT technologies feature prominently
in this section. Traceability within the food supply chain is the capacity to track and trace
food, or substances intended for human or animal consumption, across all production,
processing, and distribution stages. Blockchain technology has been applied to processes
about traceability within the supply chain, contributing to more rapid, secure, and reliable
data exchange among food supply chain participants, such as producers, transporters,
and consumers. Furthermore, it facilitates regulatory compliance within industrial sectors
efficiently and cost-effectively [26,71-74].

As one of its functional features, blockchain manages its transactions using smart con-
tracts. By enforcing predefined terms and conditions, these contracts streamline operations,
reduce costs, and help companies and regulatory authorities to promptly investigate and
deal with potential safety hazards and avoid quality and safety incidents. These activities
are often enhanced by IoT device integration and controlled user access [26,27,37,51,73,75].

Most application examples for blockchain and IoT in food traceability pertain to
agricultural products and their entire journey from farm to fork, with food manufacturing
considered a significant link in this chain, responsible for assessing the quality of incoming
materials and ensuring delivery of quality products. The application of blockchain and
IoT is cited to facilitate product recalls through data-driven decision-making [76]; compile
an auditable history of any agricultural product, track all information online in real-time,
readily identify contaminated products without necessitating the recall of an entire batch,
and monitor the location and transportation conditions, verifying the characteristics of
food products that utilize the cold chain [51,77]; minimize the production and distribution
of unsafe or low-quality Xinzheng red jujube, thereby mitigating the potential for negative
publicity, liability, and recalls [78]; issue a certificate for each food item verified at the point
of purchase [72]; manage the cold chain for perishable products, such as the proposed
ShrimpChain which will rank packaged shrimp according to the integrity and accuracy
of authenticated data entered during various production stages [54]; enable consumers
to readily access information concerning the extra virgin olive oil being purchased [10];
enhance agility in mitigating food crises by facilitating the precise detection and elimination
of contamination sources [79]; and enable real-time monitoring and management of all
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communications and transactions within the agricultural supply chain, aiming to ensure
food safety in a decentralized manner [80].

To support the execution of quality audits, blockchain technology has been applied to
enable manufacturers to track, monitor, and audit the entire food process, including critical
production stages [81], to achieve more streamlined and expedited auditing processes,
reducing the need for extensive personnel involvement [73], and to manage the integration
of routine production site audits within the framework of a Hazard Analysis and Critical
Control Points (HACCP) system [79]. Furthermore, quality systems can be developed, as
exemplified by the real-time information management and control of the rice supply chain
based on a multi-chain collaboration architecture employing blockchain technology [82] and
the application of smart contracts to establish incident alert levels for intelligent, real-time
decision-making in the event of a food cold chain failure scenario for perishable products
such as meat and fish [83]. The determination of foods’ origin with greater precision can be
more readily facilitated through blockchain technology than traditional annual sampling
within a third-party certification process [74].

Beyond blockchain, Al can be employed in quality checks to ensure, through facial and
object recognition, that employees wear appropriate personal protective equipment, such
as masks or caps, and that they verify the temperature and cleanliness of food [16].

Despite demonstrating significant potential for the agri-food supply chain, companies
are still in the exploratory phase of utilizing blockchain, conducting proof-of-concept
studies and tests for the future implementation of solutions [10,51]. Deficiencies in training
and insufficient infrastructure investment impede the advancement of digital technologies
implementation within agribusiness [26,84].

3.2.5. Quality Policy and Strategy

Finally, a mere nine articles provided examples of applying five digital technologies to
support decision-making concerning the formulation of food quality and safety policies
and developing strategies (Table S5 in the Supplementary Materials). These quality policy
and strategy activities were categorized into four distinct clusters: customer focus (56%),
strategic analysis (44%), quality cost reduction (22%), and quality policy (11%).

Regarding customer focus, blockchain and IoT technologies were mentioned as en-
abling consumers to scrutinize product information and verify authenticity through the
implementation of smart contracts, exemplified by the mitigation of fruit fraud risks [10],
and as providing reliable and detailed product information on food origin, logistics de-
tails, and production and distribution processes to empower consumers to make informed
and responsible purchasing decisions [76]. Extending beyond the food manufacturing
process, the perceptions of 4017 tea consumers regarding blockchain-based traceability
were assessed, and the resulting data was utilized to inform the strategic management of
investments in food quality and safety programs [85].

In the conduction of strategic analysis, big data analysis proves advantageous for formu-
lating and guiding an organization’s strategic direction [69]. A blockchain-based wireless
sensor network monitoring system was cited to enhance quality control decision-making
strategies [36]. Additionally, blockchain technology was mentioned to provide greater visi-
bility of the taxes collected by the government and a more assertive allocation of resources
that will support shrimp producers in meeting the demands of domestic and foreign mar-
kets and impel the export of seafood [54]. Examples of quality cost reduction and quality policy
elaboration are detailed in Table S5, which is provided in the Supplementary Materials.
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4. Discussion
4.1. Maturity of Quality Managerial Functions in Adoption of Digital Technologies

Analysis of the selected documents revealed the prevalence of the adoption of digital
technologies for quality control (QC) and quality assurance (QA) activities, which aligns
with previous findings [2,3]. This can be attributed to the fact that these functions are
considered central to quality systems. Their primary focus is maintaining product and
process parameters within specified technical tolerances and ensuring that consumers
and customers meet their desired quality requirements. Since these functions are directly
linked to customer needs concerning food standardization and safety, they are perceived
by customers as adding the most value to companies.

In contrast, quality design (QD), quality improvement (QI), and quality policy and
strategy (QPS) functions primarily concern internal company quality activities. These
functions focus on enhancing product, process, and material development, identifying the
root causes of problems to mitigate waste and reduce process tolerances, and defining long-
term quality strategies and policies. Because these activities are less visible to customers,
they may not be perceived as value-adding or worth a higher final product price [86].
This could explain why companies focus less on adopting digital technologies for these
particular functions, reducing emphasis on these areas in academic research.

Additionally, the digital transformation of quality management functions faces several
barriers [87]: technical (e.g., lack of standardized metrics), organizational (e.g., organiza-
tional resistance), and technological (e.g., insufficient technological infrastructure). These
are all exacerbated by an economic barrier that demands investment in company diag-
nostics, employee training, and equipment acquisition. Therefore, it is logical that most
propositions focus on activities that add more value in the eyes of consumers and customers,
such as QC and QA.

New propositions are primarily related to quality control (QC) and quality assurance
(QA) activities. An assessment of the technology readiness level (TRL) [88] of the presented
propositions reveals a generally low maturity level (Table 3). Thirty percent of new propo-
sitions were classified at TRL 1-2, indicating that only the latest technological concept had
been formulated. These technologies primarily addressed quality control (QC) activities,
such as testing quality attributes and microbiological contamination of fruits and vegeta-
bles [34] and proposing a model to monitor food conditions and inform authorized users
via sensors and blockchain technology [37]. Most new proposals, 54%, were at TRL 34,
where a technology prototype had been developed and validated at the laboratory scale.
Most of these cases are related to QC activities, including using sensors for classifying
livestock internal organs [57], assessing Staphylococcus aureus exotoxin [62], and detecting
subtle differences in the aromatic profiles of green coffee beans and Cayenne samples [50].
Propositions at higher TRLs were predominantly linked to quality assurance (QA) activities.
Thirteen percent of proposals were between TRL 5 and 6, signifying validation in a relevant
environment. An example is the development of a blockchain-based system for the quality
traceability of Xinzheng red jujube, aimed at minimizing the production and distribution
of unsafe or low-quality products, which was validated at Henan Xinzheng Xinxing Jujube
Industry Corporation Ltd. (Xinzheng, China) [78]. Only one new proposition was identi-
fied in the TRL 7-8 range, where the system prototype is demonstrated in an operational
environment. This example involved a prototype system for rice supply chain information
management and control, built and applied to an enterprise in northeast China, where the
model was analyzed and tested [82].
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Table 3. The technology readiness level (TRL) of the proposals.
TRL % Proposals Quality Function Most Mentioned
1-2 30 QC (48%)
3-4 54 QC (63%)
5-6 13 QA (75%
7-8 3 QA (100%)
9 0

Just as the maturity level of new propositions is low, so is their current adoption by
industries. Comparing QC and QA activities, it is evident that QA-related activities exhibit a
higher maturity level (TRL > 5). This suggests that proposals for quality assurance systems
are more advanced and gain greater visibility from companies. Similarly, activities like
traceability, audits, and certification can be incorporated into various businesses, whereas
quality control analyses are often more tailored to specific food products.

No new model or framework propositions involved quality design (QD) activities. This
presents an opportunity for quality engineering tools like Design of Experiments (DoE) and
Quality Function Deployment (QFD) to have their stages supported by digital technologies.

4.2. Food Quality Management 4.0 Framework Proposition

This section proposes the FQM 4.0 framework (Figure 3) as an evolution of the FQM
model [4].

The framework’s consolidation is based on the most frequently mentioned Industry
4.0 technologies supporting quality management functions. This involved considering
the citation frequency of digital technologies within each quality management function,
as shown in Figure 2, and the four categories of Industry 4.0 technologies presented in
Table 2. Consequently, a version of the FQM model [4] was enhanced to include the most
prominent digital technologies for each management function. It is important to note that
since this article filtered documents specifically addressing food manufacturing activities,
the framework exclusively considers the technological function of “processing of food
materials to food products,” highlighted in white within the framework.

The proposed framework highlights how digital technologies are gradually being
integrated into food manufacturing, with a predominant focus on the Cybernetics category.
Among these technologies, sensors are the most widely applied, supporting all five man-
agerial quality functions—particularly QC and QI. Emerging technologies such as Al and
ML are mainly associated with QC, enabling faster and more accurate evaluations.

Studies in the data management category have shown that big data supports QI by
improving process efficiency and product quality. The simulation and extended reality
category, represented by DT technologies, contributes to QD and QC by enabling virtual
prototyping, predictive assessments, and real-time monitoring.

Connectivity and integration technologies, such as blockchain and IoT, are significantly
associated with QA and QPS. Their integration enhances traceability, supports strategic
decision-making, and increases transparency across the supply chain.

A major contribution of the framework is its emphasis on food safety as a transversal
and critical component of food quality. Although not formally classified as a managerial
quality function, food safety emerged as a central theme, mentioned in 94% of the analyzed
articles and explicitly as “food safety” in 83%, especially in studies on sensors, blockchain,
Al, and IoT. This underscores its relevance, driven by stricter regulations and the reputa-
tional risks of safety failures [89]. By incorporating food safety into the framework, we
propose a more comprehensive understanding of quality in the food industry—where all
managerial functions ultimately aim to ensure safe food production.
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Figure 3. Food Quality Management 4.0 framework.

For practitioners, this framework provides a structured view of how Industry 4.0
technologies can be strategically aligned with quality functions to enhance food safety and
performance. It offers a conceptual foundation for academia to explore the intersection
between digital transformation and quality management in food manufacturing, identifying
research gaps and guiding future empirical studies.

Practical Application: A Cocoa Manufacturing Illustrative Example

To demonstrate the practical applicability of the proposed framework, we developed
a case study based on the cocoa manufacturing process (Figure 4). An example of the
horticultural sector was chosen due to its prominence in empirical studies analyzed in our
systematic literature review (SLR), highlighting its relevance in discussions concerning
digital technologies and food quality management.
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Figure 4. Illustrative application of the Food Quality Management 4.0 framework.

We divided the cocoa manufacturing process into four stages: receiving, processing,
packaging, and storage. We identified relevant Industry 4.0 technologies from the literature
for each stage and linked them to corresponding quality management functions. In the
receiving stage, image analysis, powered by artificial intelligence (Al), detects foreign
contaminants, such as stones and branches mixed with cocoa beans. This supports the
quality assurance (QA) function (cluster: quality check). During processing, electronic
noses determine the degree of roasting of cocoa beans. These smart sensors for this activity
relate to the quality control (QC) function (cluster: assessment). Another quality activity
incorporated at this stage is the definition of optimal process parameters for new products—
for instance, a new cocoa origin—through simulation using digital twin (DT) technology.
This eliminates the need for prototype testing and integrates quality design into the process
(clusters: process development and product development).

At the packaging stage, sensors are integrated into the final product weighing process
to collect extensive datasets. Big data analytics analyzes these to provide real-time insights
for automatic process adjustments, reducing the frequency of human monitoring and
increasing production efficiency. This promotes the quality improvement (QI) function
(cluster: continuous improvement). Finally, a blockchain-based sensor network monitoring
system in the storage stage supports strategic decision-making regarding stored products.
This is achieved through mechanisms such as First-Expired-First-Out (FEFO) inventory
management, dynamic expiry date implementation, and dynamic pricing systems, fostering
increased transparency and trust and preventing data tampering. This activity contributes
to the Quality Planning and Strategy (QPS) managerial function (cluster: strategic analysis).

4.3. FQM 4.0 Framework Validation in the Food Industry

A survey was administered to managers across 30 Brazilian food industries to validate
the framework. Participants included quality managers (30%), quality coordinators (30%),
quality analysts (13%), quality supervisors (10%), C-level executives (9%), quality directors
(3%), and assistants (3%). The questionnaire featured both open and closed-ended questions
concerning the use of digital technologies in their organizations” quality activities and the
drivers and barriers to adoption.

The industries represented a diverse range of sectors: 21% cocoa, chocolate, and
confectionery manufacturing; 17% dairy products; 10% milling, starchy products, and
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animal feed; 10% spices, sauces, seasonings, and condiments; 10% alcoholic and non-
alcoholic beverages; 7% preserved fruits, vegetables, and other plant-based products; 6%
bakery products, biscuits, and crackers; 3% prepared foods and dishes; 3% vegetable
and animal oils and fats; 3% slaughtering and meat product manufacturing; 10% other
unclassified food product manufacturing.

The questionnaire provided examples of digital technology applications in quality
processes, illustrating combinations of quality functions and Industry 4.0 categories as
presented in the framework (Figure 3). Respondents could indicate all examples relevant
to their company’s routines (Table 4).

Table 4. Managerial quality functions and Industry 4.0 technology adoption in food industries.

Managerial Quality Functions Supported by Industry 4.0 Category %
QC and Cybernetics 72
QI and Cybernetics 6
QA and Connectivity and Integration 5
QA and Simulation and Extended Reality 3
QD and Cybernetics 3
QI and Data Management 3
QA and Cybernetics 1
Other 1
None 6
Total 100%

Quality control (QC) activities supported by Cybernetics technologies were the most
frequently reported. Common applications included using sensors for measuring tem-
perature, humidity, pH changes, and the presence of gases (e.g., oxygen, ammonia, CO5).
Computer vision for detecting product defects was also frequently mentioned.

Three technology categories were highlighted for quality assurance (QA) activities. IoT
exemplified connectivity and integration for facilitating data transfer to support product
traceability, and simulation and extended reality was exemplified by digital twins aiding
hazard analysis and critical control points.

Consistent with the systematic review findings, companies cited quality improvement
(QI) and quality design (QD) functions less frequently. QI was supported by Cybernetics
(e.g., robots automating repetitive tasks and enhancing process standardization). QD
was cited in conjunction with Cybernetics, involving artificial intelligence for developing
product recipes aligned with customer preferences and machine-learning algorithms for
analyzing customer data to inform new product development.

No company reported using digital technologies to support quality policy and strategy.
Furthermore, 6% of the surveyed companies indicated they do not utilize any digital
technologies in their quality processes.

Company representatives were asked to identify the primary drivers and barriers to
adopting digital technologies in their quality routines. Key drivers included practicality in
data collection, agility in correcting deviations, improved quality and reliability of records,
accelerating decision-making, and reduced time for process control and routine quality
activities. Conversely, the main barriers identified were the high implementation costs,
lack of specialized labor, absence of an organizational culture that prioritizes investment in
emerging technologies, and insufficient prioritization of the quality sector within compa-
nies, leading to investments primarily focused on increasing operational efficiency rather
than quality activities.

The survey results align with the discussion on the technological maturity of the propo-
sitions in the literature. Despite consulting various company sectors and sizes, responses
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consistently pointed to using sensors for quality control as the primary application of
digital technologies in quality routines. This suggests that low adoption rates might impact
the overall technological readiness and diffusion of new technologies, corroborating the
literature’s observation of a low readiness level for new quality methods, frameworks, and
systems. The less disseminated these technologies are, the more expensive they become,
leading to a more concentrated development in developed countries. The barriers identified
by companies, such as high costs, personnel shortages, and organizational resistance, are
also frequently reported in the academic literature [90]. To overcome these challenges,
potential solutions include public—private partnerships for new technology development,
pilot projects, or management training [91].

5. Conclusions

This study provides a systematic literature review to understand how digital technolo-
gies are being used to support the five managerial functions of food quality management
in food manufacturing. Based on these findings, the Food Quality Management (FQM)
4.0 framework is proposed, offering a novel and integrative lens to understand the role
of digital transformation in food quality management. The FQM 4.0 framework serves
as a foundation for advancing academic research and supporting industrial practice in
designing safer, smarter, and more resilient food production systems in the era of Industry
4.0. Theoretically, it organizes scattered research findings and provides a structured basis
for future empirical studies. Practically, it assists companies in identifying technology gaps
and guiding strategic investments in digital quality solutions.

This framework distinguishes itself from the existing literature by analyzing all quality
functions that guide quality management in organizations, not just those corresponding to
customer and consumer value streams, such as quality control (QC) and quality assurance
(QA). A significant contribution of this work is addressing the existing gap in the evolution
of processes related to quality improvement (QI), quality design (QD), and quality policy
and strategy (QPS) activities in food manufacturing. A more holistic view of quality
management in the food industry is a crucial exploration area. Furthermore, including an
illustrative application case and the theoretical validation of the framework with the food
industry enhance the robustness and clarity of the study’s propositions and discussions.

This research has certain limitations. First, the independent categorization of quality
activity examples correlates each example with only one managerial quality function. In
practice, however, a single activity may fulfill the requirements of multiple quality functions.
Second, the prevalence of numerous literature reviews and conceptual or laboratory-scale
method propositions diminishes practical guidance for companies interested in implement-
ing these technologies in their routines. Finally, the conceptual nature of the framework
limits its immediate adoption.

Furthermore, our findings lead to recommendations for future research. One area is
the study of underexplored quality functions. A specific proposal involves examining the
integration of technologies like sensors, big data analytics, and Al to support the collection
and analysis of customer needs and the translation of these needs into product development
requirements, thereby expanding studies on the quality design function.

Given the discussion on the low technological readiness level of the proposed methods
in the literature, another emerging theme for future research is the necessity of real-world
applications of the FQM 4.0 framework to validate the proposal. One suggestion is to
explore the framework across different food industry sectors—such as fruits, vegetables,
meat, fish, grains, and beverages—to understand which technologies are most suitable for
each industrial branch. Lastly, while this framework primarily focused on quality activities
performed in processing food materials into food products, one suggested extension is to
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analyze these activities within the scope of other technological functions such as the supply
and storage of food materials and the storage and distribution of food products.

Supplementary Materials: The following supporting information can be downloaded at
https:/ /www.mdpi.com/article/10.3390/foods14142429 /s1, Table S1. Quality design activities
supported by digital technologies; Table S2. Quality control activities supported by digital technolo-
gies; Table S3. Quality improvement activities supported by digital technologies; Table S4. Quality
assurance activities supported by digital technologies; Table S5. Quality policy and strategy activities
supported by digital technologies.
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The following abbreviations are used in this manuscript:

FOM Food Quality Management

QD Quality Design

QC Quality Control

QI Quality Improvement

QA Quality Assurance

QPrs Quality Policy and Strategy
Al Artificial Intelligence

ML Machine Learning

IoT Internet of Things

BD Big Data Analysis

DT Digital Twin

QFD Quality Function Deployment
DoE Design of Experiments

HACCP Hazard Analysis and Critical Control Points
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