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Abstract

Ensuring food safety in complex supply chains requires evaluation frameworks that inte-
grate multiple indicators, account for their interdependencies, and incorporate historical
performance. This study proposes a novel RM—-Shapley-FAHP framework that combines
the Fuzzy Analytic Hierarchy Process, Shapley value contribution analysis, and a rep-
utation decay mechanism to construct a dynamic, multi-year assessment model. The
framework evaluates six governance subsystems, mitigates indicator redundancy, and links
past performance to current risk posture. Applied to a leading food enterprise over three
years, the method demonstrated superior consistency, interpretability, and operational
relevance compared to FAHP, entropy weighting, and equal-weight baselines. The results
demonstrate that RM—-Shapley-FAHP framework effectively supports balanced develop-
ment in food safety governance by capturing temporal dynamics and interdependencies,
offering interpretable and operationally relevant guidance for decision makers. In future
work, this framework may be extended with machine learning to improve adaptability for
multi-dimensional and time-series evaluations, noted here as a research prospect rather
than a present contribution.

Keywords: food safety evaluation; Shapley value; FAHP; reputation mechanism; food
supply governance

1. Introduction

Food safety is a core issue in global public health and socioeconomic development, and
its evaluation involves the complex interaction of multi-dimensional indicators. Traditional
assessment methods often rely on single data sources or subjective weighting, resulting in
issues such as dimensional fragmentation and expert preference bias, making it difficult
to fully reflect the dynamism and uncertainty of food safety systems [1]. In recent years,
multi-criteria decision making techniques (such as the Fuzzy Analytic Hierarchy Process,
FAHP) have gradually become a research hotspot in food safety assessment. Currently,
research in the field of safety assessment both domestically and internationally is mainly
focused on the construction of assessment indicator systems and the optimization of
assessment methods. In constructing index systems, researchers have proposed tailored
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indicator frameworks for a wide range of application domains, including government
administration [2], telecommunications [3], industrial manufacturing [4], fire safety [5],
healthcare networks [6], financial systems [7], and other related areas.

For instance, Mansoor Z [2] suggests that systems approaches consider policy—context
complementarities and their relationship to impact evaluation, external validity, imple-
mentation science, and complexity theory. Meanwhile, Ye W [3] creates a Short-Term
Demand-based Deep Neural Network using multilayer Bayesian networks to improve cold
supply chain demand forecasting for e-commerce products. Ab Rahim M S et al. [4] discuss
the importance of integrated risk assessment in the chemical process industry. Dobler
Strand and Log [5] present a fire danger index for Norwegian wooden homes based on
fuel moisture content and weather data. Declerck J et al. [6] provide a summary of data
quality frameworks for health data and attempt to create a unified framework. Semenov A
et al. [7] use factor analysis to evaluate financial management’s effect on economic safety
and suggest adaptive measures to reduce costs and risks. Recent advancements in 2024
include the work of Chen et al. [8], who formalize cross-domain safety metric interoperabil-
ity using tensor decomposition in mathematics, and Li et al. [9], whose 2025 mathematics
study quantifies temporal risk propagation in IoT-enabled supply chains via stochastic
differential equations.

Recent studies underscore the growing complexity of food safety evaluation and the
shift toward integrated, data-driven, and risk-based frameworks. Rohrs et al. [10] propose
a quantitative supplier risk assessment tool that evaluates reliability through predefined
safety metrics, enabling proactive identification of high-risk actors within the supply chain.
Complementing this, Holmes et al. [11] introduce a multi-criteria decision making (MCDM)
framework, integrating sustainability and safety risks to enhance supplier evaluation and
supply chain resilience. Oh et al. [12] demonstrate the application of private blockchain
systems in food distribution networks, significantly improving traceability and data in-
tegrity verification, which are vital for real-time risk monitoring. Julien [13] emphasizes
the role of certification standards and compliance mechanisms in supplier safety evalu-
ation, providing a historical yet foundational perspective on institutional approaches to
risk control. From a systemic audit perspective, Kleboth et al. [14] propose a risk-based
integrity audit model tailored for complex food networks, enabling the dynamic prioritiza-
tion of high-risk nodes based on evolving data and stakeholder inputs. Meanwhile, Zhang
et al. [15] apply a graph neural-network-enhanced model (SGCNiFormer) to evaluate
how varied storage conditions affect wheat quality, marking a move toward Al-supported
environmental risk assessment in post-harvest logistics. Together, these studies highlight
a trend toward multi-dimensional, technology-driven, and proactive evaluation models
that integrate quantitative metrics, supply chain analytics, and digital trust infrastruc-
tures to enhance food safety assurance. Nevertheless, most of these approaches remain
domain-specific or technology-focused, with limited attention to indicator interdependence,
temporal dynamics, and transparent contribution tracing.

On the methodological front, scholars have developed diverse quantitative evaluation
models, including the Fuzzy Analytic Hierarchy Process (FAHP) [16], entropy weight-
ing [17], Bayesian networks [18], and clustering-based techniques [19,20]. For example, Liu
et al. [16] refined the FAHP method for structural safety evaluation of diversion tunnels
by introducing a pre-ranking mechanism and enhanced index consistency checks, which
alleviated expert judgment inconsistency but still relied heavily on subjective scoring. An
et al. [17] combined entropy with TOPSIS in assessing renewable energy projects across
Belt and Road Initiative countries, thereby offering a more objective weighting scheme that
reduces expert bias, yet the method remained sensitive to data quality and lacked mecha-
nisms for incorporating temporal change. Wu et al. [18] integrated ARAMIS with Bayesian
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networks to model petrochemical industry risks dynamically, improving the ability to
capture risk propagation paths under uncertainty, though interpretability for non-technical
decision makers remained limited. Dong et al. [19] applied a consensus-driven clustering
model to COVID-19 risk analysis, effectively handling heterogeneous expert opinions but
with limited transferability across domains. Similarly, Zhang and Zhou [20] introduced a
Hausdorff distance-based clustering algorithm for cyber safety anomaly detection, which
improved sensitivity to abnormal events but required intensive computation and provided
little guidance on multi-criteria trade-offs.

These advances demonstrate tangible progress in terms of improving consistency,
reducing subjectivity, and capturing dynamic or heterogeneous risks compared with earlier
models. In practical applications, the current comprehensive evaluation method, based
on quantitative evaluation, involves two steps: determining index weight and selecting
an index aggregation model [16-23]. However, these improved methods are not without
shortcomings. First, many such hybrids still assume independence among indicators,
failing to explicitly model interdependencies, overlap, or coupling effects among criteria.
Second, they tend to treat evaluation as a static snapshot, neglecting how past performance
should inform the present assessment—a limitation when evaluating dynamic systems
like supply chains. Third, transparency of contribution among modules is often low; users
cannot easily trace how much each submodule (weighting, ranking, optimization) affects
the final score. Finally, dynamic adjustment mechanisms (e.g., time decay, reputation
weighting) are rarely incorporated to emphasize recent performance over stale history.

Despite the wide application of FAHP and other MCDM methods, existing studies still
face challenges, such as indicator redundancy, insufficient handling of interdependencies,
and the lack of mechanisms to incorporate historical performance into current evaluations.
This study addresses the following research questions (RQs): (1) How can interdependent
indicators and overlapping dimensions be systematically integrated to improve evaluation
consistency? (2) In what way can historical enterprise performance be embedded into
current safety assessments to enhance interpretability? (3) How can FAHP, despite being a
relatively mature method, be revitalized through integration with Shapley value analysis
and a reputation mechanism to provide more dynamic, multi-dimensional evaluations?

Compared with entropy, Bayesian, or clustering models, FAHP provides a transparent
hierarchical structure, direct incorporation of expert knowledge, and consistent qualitative-
to-quantitative conversion under uncertainty. These features make it particularly suitable
for food safety governance, where interpretability, transparency, and traceability are in-
dispensable. The objective of this study is therefore to build on FAHP as a reliable foun-
dation while addressing its methodological gaps—namely, limited handling of indicator
interdependencies, static treatment of temporal information, and insufficient contribution
traceability—so as to develop a dynamic, multi-dimensional evaluation framework that
meets the evolving requirements of food safety governance in complex supply chains.

Among advanced evaluation strategies, the Shapley value has gained attention for its
ability to capture indicator interdependencies and marginal contributions. Shapley value
analysis has improved alignment with real-world development dynamics. At present, the
evaluation algorithm combined with Shapley value analysis has been effectively applied in
many fields, such as engineering construction [24], government project financing [25], server
data interaction [8], supply chains and service providers [9], and so on. Chen et al. [24]
create Shapley value smart contracts for fair task collaboration rewards. Ghorbany et al. [25]
study KPIs” impact on PPP infrastructures. Guleria, Srinivasu, and Hassaballah [8] use
SHAP values to improve transparency in predictive maintenance models. Wang [9] suggests
a profit-sharing mechanism based on game theory to promote collaboration between
carriers in supply chain distribution.
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In parallel, reputation mechanisms have become essential for linking historical perfor-
mance with future risk posture. Reputation mechanisms further enhance evaluation depth
by linking past performance to future behavior. From the perspective of enterprises, the
reputation mechanism currently plays an important role in the blockchain transaction [20],
privacy computing [21], 6G communication [26], supply chain discourse power [27], and
other links. Pari S N and Sudharson K. [20] suggest a Hybrid Trust-Based Reputation Mech-
anism (HTRM) for secure routing and misbehavior detection in networks, along with a
robust PKI system for edge-to-edge safety. Zhang B, Wang X, Xie R, et al. [21] propose an in-
centive mechanism based on reputation to encourage cooperation among OBUs in VANETs
and deter attackers. Zhu et al. [25] suggest a dynamic incentive and reputation mechanism
for federated learning using game theory, while Liu et al. [27] propose a reputation model
for enhancing PBFT consensus in a vehicular edge metaverse.

Therefore, this study consolidates the dynamic influence of food safety indicators
across multiple evaluation models and over time. Building on the RM-Shapley-FAHP
framework, which fuses FAHP, Shapley value analysis, and a reputation decay mechanism,
we construct a unified index system that captures indicator interdependence, mitigates
redundancy, and embeds three-year historical performance. By integrating a reputation
mechanism (RM), the model links past behavior to current risk posture, thereby improving
interpretability and yielding enterprise-specific, fine-grained assessments. The resulting
framework clarifies the essential requirements for food safety evaluation, offers a transpar-
ent weighting rationale, and equips companies with more accurate and actionable insights
for governance and development. The remainder of this paper is organized as follows.
Section 2 introduces the research materials and methods, including the FAHP model, the
Shapley value calculation, and the reputation mechanism. Section 3 presents the empir-
ical evaluation and validation results, followed by comparative analyses and practical
applications. Section 4 provides a discussion of the findings, highlighting methodological
contributions and practical implications. Finally, Section 5 concludes the study with a
summary of key insights, limitations, and directions for future research.

2. Materials and Methods

The food evaluation model is taken as research object, and it is comprehensively
evaluated based on the Shapley-RM method in relation to 6 aspects (U1 to U6) and 6 related
incorporated models (models A to F). The entire system and each of the incorporated models
are firstly evaluated according to the fuzzy comprehensive evaluation (FCE) method. Then,
based on the overall and model scores, the Shapley value and percentage contribution
corresponding to each model’s contribution to the evaluation of the global indicator system
are calculated. Finally, the comprehensive network and data safety evaluation values for
each year are weighted so that the current network and data safety status can be determined
based on the comprehensive evaluation values of the last three years and the RM. The
entire method is reflected in Algorithm 1.

The materials and data were provided by the China Non-Staple Food Circulation
Association for the food safety evaluation of several leading domestic food supply chain
enterprises through a data management platform and an information traceability system.
Confirmed by the enterprise, data collection is conducted in strict compliance with applica-
ble laws and regulations and subject to review by a professional auditing team to ensure
data legality and reliability. In accordance with operational standards, customer privacy
requirements, and data security regulations, the relevant data may not be publicly disclosed
without authorization. For any collaboration or research purposes, the data presented in
this study are available upon request from the corresponding author.
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Algorithm 1: RM-Shapley—FAHP for Food Safety Evaluation

Input: Indicator system U ... Us; Sub-models A . .. F; ExpertScores; Historical(3y)
Output: Composite evaluation score with reputation adjustment

1 Function RMShapleyFAHP (U, A . .. F, ExpertScores, Historical):
2 Build indicator hierarchy (criterion/factor/indicator); > Step 1: Initialization
3 Collect expert scores and enterprise records;
4 W < FAHPWeights u, ExpertScores); > Step 2: FAHP weighting
5 {¢m}mea.r < ShapleyContrib (A...F, W);> Step 3: Interdependency via Shapley
6 A < SolveLambda(); > Step 4: Solve A + A2 A3 =1
7 FinalScore < AggregateScores ({¢n }, A, Historical); > Step 5: Time-weighted aggregation
8 return FinalScore;
9 Function FAHP Weights (U, ExpertScores):
10 Construct fuzzy complementary matrix R from pairwise judgments; > Input — matrix
11 if CI(R) > 0.1 then
12 L refine judgments / pre-rank indicators; > Consistency control
13 Derive weights W (criterion/factor/indicator); > Qualitative — quantitative
14 Compute fuzzy single-factor scores and aggregate; return W;
15 Function ShapleyContrib (A...F, W):
16 for each sub-model m € {A...F} do
17 compute Sy, (weighted by W); > Per-model score
18 for each subset S C {A...F} do
19 evaluate fused score f(S); > Coalition value
20 for each m do
21 P — Ls W[f(_g U{m})— f(S)]; > Shapley value
22 normalize {¢y, } to contributions (%); return {¢y, };
23 Function SolveLambda():
24 Find A € (0,1) s.t. §(A) = A + A% 4+ A3 — 1 = 0; > Closed-form not available
25 while not converged do
26 LA < A —g(A)1+2A +3A%; > Newton step
27 return A ~ 0.543689;
28 Function AggregateScores ({¢, }, A, Historical):
29 fort =1to3do
30 Ct <= Y. ¢w - Sm,t;>Year — tcomposite
m
31 C; + Ct - A3~ ;>Rescent years weight more
32 FinalScore < AC3 4+ A2Cy + A3Cy ;> Time-decayed sum
33 return FinalScore;

2.1. FAHP Model

FAHP is a mature risk management evaluation method, which combines the advan-
tages of hierarchical analysis and a fuzzy comprehensive evaluation method. It uses the
theory of fuzzy mathematics to remove subjectivity, thus improving the reliability of risk
evaluation. Previous studies have applied the FAHP method in various safety and risk
evaluation contexts. For example, Liu et al. [16] improved structural safety assessments of
diversion tunnels by refining consistency checks, while An et al. [17] combined entropy
with TOPSIS to enhance energy project evaluation. These applications demonstrate the
statistical grounding and flexibility of FAHP, but they also highlight persistent reliance on
subjective scoring and limited treatment of temporal information, which motivate its exten-
sion in this study. In the FAHP model for this evaluation, the Criterion Level is divided
into i parts as P;. Each component corresponds to the influencing factors that make up the
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Factor Level as Pj; for j factors. The fuzzy evaluation value of a single factor is evaluated
by a team of experts and then divided into fixed values of K points (K = 0,1,2...k — 1),
corresponding to high, medium, and low risk depending on the actual situation. The
weights obtained for each point are Ryj.

The specific calculation steps are as follows:

1.  Determine the factor set P and the weight vector A, P;, Py, A;, and Ajj. Determine the
fuzzy complementary scores s of P;(i traverses 1 to I) and P;(i is a fixed value and
j traverses 1 to J), forming a fuzzy complementary matrix S. Distribute evaluation
questionnaires and invite a number of experts to complete them. Comparative ratings
of the relative importance of the indicators at the same level of hierarchy and affiliation
are made between the two factors. A 9-level scale of 0.1-0.9 is used for the dimensional
breakdown. Combined with the definition of the fuzzy complementary matrix in the
formula below, for the two-by-two comparison of the scoring, results of the indicators
to meet the fuzzy complementary matrix are the basic requirement. The final scoring
matrix that satisfies the fuzzy complementary matrix scoring result is denoted as S,
which is represented as shown below.

0< Sxy < 1,54« = 0.5
SXy+SyX = 1/ (X/y = 1/2/‘ o /I)

Sp1 S22 ... Sz M
S=1 . . )
Su Sp ... Sni

where I is the number of parts the Criterion Level is divided into and S is the final scoring
matrix that satisfies the fuzzy complementary matrix scoring result.

2. Calculate the correlation weight coefficient ry = 2{21 sxte(t=1,2,---+-- D).
3.  Fuzzy consistent treatment of correlation weight coefficients. The fuzzy judgment
matrix R is obtained through ryy = % +0.5.

4.  Consistency test for fuzzy judgment matrix. Comparative judgment is based on the
size of the final CI value obtained. When CI is less than 0.1, it means that the set of
data satisfies the fuzzy consistency requirement.

Yot Ljo1 [Sxy — Ryl
2

CI(S,R) = ()
where S is the final scoring matrix that satisfies the fuzzy complementary matrix scoring
result; R is the fuzzy judgment matrix; I is the number of parts the Criterion Level is divided
into; Ryy is the value in row x and column y of matrix R; and Sy is the value in row x and
column y of matrix S.

5. Determine the specific value of the weight vector A. In some cases, weights can also
be specified by a team of decision making experts or calculated using methods like
the entropy weighting method (EWM).

11 1 !
A= — — . .

N T (Y k;rlk ®)
where Aj and Aj satisfy }; A; = 1 and }; Ajj = 1; I is the number of parts the Criterion
Level is divided into; A; is the weight of the i-th criterion layer factor; and A;; is the weight
of the j-th factor under the i-th criterion layer factor P;.
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6.  Establishing evaluation sets for integrated evaluations V and V;.

7. Taking single-factor fuzzy evaluation for evaluation matrix V and Vj. If the sub-
jection degree of the ij factor in the factor set P to the ijk™ factor in the eval-
uation set V is Ryy, the result of the single-factor evaluation of the ijth element
is Vij = (0,1,2) * (Rijo,Rijl,Rijz)T. The subjection degree of Ry can be obtained
from the expert composite rating combined with the FAHP method. Ry satisfies
RijO + Rijl + RijZ =1

8.  Developing a basic comprehensive evaluation model. After confirming the single-
factor evaluation matrix Vj; and the weight vector A;;, through the fuzzy variation
and comprehensive evaluation operator, the corresponding V; of the Criterion Level
P; is obtained as

Vi= ) AjxVj 4)
j=1..5

where V; corresponds to the Criterion Level P;; Vj; is the value of the j-th factor under the

i-th criterion layer factor Pj; and Aj; is the weight of the j-th factor under the i-th criterion

layer factor.

9.  Determining the improved evaluation models. Determine the improved system
evaluation score F as
F= ) AxYV (5)
i=1..6
where F is the total system model score; A; is the weight of the i-th criterion layer factor;
and V; corresponds to the Criterion Level P;.

2.2. Shapley Contribution Calculation

Considering that the weights of the fused models in performing safety evaluation
are often assigned using traditional subjective assignment methods, even when entropy
weighting or entropy-related weighting methods are applied, all of them are carried out
under additive measurements. In fact, there are certain correlations and overlapping influ-
encing factors between the models, and when two or more indicator factors overlap, they
cannot be realized through simple addition but should be considered for their interactions.
The Shapley value addresses the evaluation contribution of multiple models working
together by emphasizing the existence of interconnectedness between the individual and
the whole. The Shapley value has also been widely employed in previous research to
quantify marginal contributions and address indicator interdependence. For instance, Chen
et al. [24] designed Shapley-based smart contracts for fair collaboration, and Ghorbany
et al. [25] examined its use in evaluating infrastructure financing performance. These appli-
cations confirm its statistical effectiveness in contribution analysis, yet its use in food safety
remains limited and often ignores dynamic temporal effects, which we address here. In
this article, the evaluation of the Shapley value is mainly applied to the model contribution
assessment and converted into the form of a percentage. The specific calculation steps are
as follows:

(1) Determining the single model score that was fused.

V= Y Vix . ©6)

Mt = ij
P;; Py K LpePye A

where V) is the single score of the tth model, M = {my,..., mp} is the set of models, Py

is the factor set contained by the tth model, t € {1,...,n}; Vi is value of the j-th factor

under the i-th criterion layer factor P;; and Aj; is the weight of the j-th factor under the i-th

criterion layer factor.
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(2) Clarify the mapping or inclusion relationships between the three levels of indicators
and the evaluation sub-models. For a subset S of M, S contains the set of factors such
that p; = Um,espPyy, - The corresponding fused model score for subset S is

Aj
V(S)= ¥ Vij X <]> 7)

P; €P; Lpyep, Ajj

where V(S) is the corresponding fused model score for subset S; Vj is value of the j-th
factor under the i-th criterion layer factor P;; and Ajj is the weight of the j-th factor under
the i-th criterion layer factor.

(3) Calculating the Shapley value for each model. The Shapley value of the t" model is
®t = YscMmees 0(S) * 8(S, my), where 6(S) = w is the Shapley weight-
ing function of subset S, §(S,m¢) = [V(S) — V(S \ {m¢})] is the Shapley value func-
tion of subset S and model m¢, S \ {m;} is the calculation of sets, and Vx € A\ B
satisfiesx € Aand x € ANB.

(4) Based on the model’s Shapley value, calculate the corresponding model contribution

percentage:

% x 100% (8)
where wy is the corresponding model contribution percentage of the " model and
@q is the Shapley value of the g™ model.

2.3. RM Calculation

Reputation mechanisms (RMs) have been adopted in several domains to embed
historical performance into present evaluations. For example, Zhang et al. [21] used RMs in
vehicular networks to deter misbehavior, and Zhu et al. [25] introduced RMs in federated
learning to align incentives. Such approaches demonstrate the statistical feasibility of
reputation-based weighting, but they remain largely linear and domain-specific, lacking
adaptability for multi-year food safety assessments. This gap motivates our integration of
RMs with FAHP and Shapley analysis. A reputation decay mechanism is introduced into
the comprehensive data safety assessment model, considering evaluation over a three-year
period. Periodic decay is denoted by value x, where x € (0,1) and x®> + x> +x = 1. This
equation only has one solution in the real number field, which is computed to take the
approximate value of 0.544.

2.4. Shapley—RM Data Safety Evaluation Model

In this paper, the Shapley value and the RM are introduced into the fuzzy comprehen-
sive evaluation model for the first time. First, the contribution of each included sub-model
is obtained based on the degree of contribution calculated in Section 2.2. A weighted
sum is obtained through composite evaluation value based on the Shapley value for the
current year. Based on the above model, the composite score for each year based on Shapley
contributions is calculated.

Fs= ) wqxVy, 9)
q=1...6
where Fg is the calculated composite score for the year numbered s based on Shapley
contributions; wyq is the percentage corresponding to the Shapley value of the q™ model;
and Vy, is the single score of the q™ model.

Based on the comprehensive score within three years, the comprehensive evaluation

model of the enterprise data safety situation can be expressed as

FSR = X3 X FSl + X2 X F52 + X X Fs3 (10)
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where Fgp is the final comprehensive evaluation score based on the Shapley value; Fg; is
the first year’s composite score; Fg) is the second year’s composite score; and Fg3 is the
third year’s composite score.

3. Results

According to the method mentioned in Section 2, we carried out this food safety
evaluation of a leading company in the food supply chain industry. As shown in Figure 1,
figure (a) illustrates the data foundation, in which mandatory documents form the core
dataset and updates are driven by new or revised items; figure (b) presents the indicator
architecture, where governance dimensions are embedded in the evaluation model and
data sources are quantified using a doughnut chart; and figure (c) depicts the technical
workflow, outlining a seven-step process from field data collection to composite scoring.
The specific assessment work was carried out in an orderly manner according to the fol-
lowing steps, as shown in Figure 1. Step 1: On-site research and data collection. Step 2:
Definition of the embedded evaluation model and multi-level indicator system. Step 3:
Fuzzy comprehensive evaluation (FCE) scoring of all indicators. Step 4: Shapley value
analysis to determine each sub-model’s marginal contribution. Step 5: Reputation mech-
anism weighting to incorporate temporal credit or penalty effects. Step 6: Three-year
composite score calculation. Step 7: Delivery of an assessment report with a development
roadmap. The output section illustrates typical visual analytics generated by the frame-
work, including (left to right) an indicator—interaction chord diagram, a bar-and-line plot
of yearly Shapley values versus planned contributions for models A-F, and a radar chart
summarizing criterion-level performance (from U1 to U2).

Due to legal regulations, corporate governance requirements, and customer privacy
considerations, the original data cannot be disclosed directly, and the years of production
and operation are represented as “Year 1,” “Year 2,” and “Year 3.”

3.1. Data Authenticity and Model Validity Analysis

The validity of the model is an important issue. In this part, the validity of the proposed
RM-Shapley—FAHP model is considered. The data used for validating the RM—-Shapley-
FAHP model were obtained from a leading state-owned enterprise with a food supply chain.
The dataset includes expert evaluations, operational records, and internal assessments,
ensuring authenticity and reliability. All evaluation experiments were conducted with
consistent expert teams and applied to the same enterprise system. Due to confidentiality
agreements, the raw data are not publicly available, but they are shared after desensitization
and with the data owner’s approval. Although there are many articles using the Analytic
Hierarchy Process (AHP) method, only a few studies have fully considered testing the
validity of their proposed model. The validity of the proposed RM—-Shapley—FAHP model
is considered from four perspectives in conjunction with previous research.

First were the numerical tests. Considering the Consistency Index (CI) in the whole
FAHP model, the consistency of the model weight parameters is calculated separately
according to the equation. The discriminations based on the CI values are less than 0.1,
as shown in Table 1, indicating that the parameters of this model are valid, as shown in
Table 2. Table 2 presents the annual scores of food safety indicators with their corresponding
weights. The results provide a detailed three-year perspective at both the criterion and
factor levels, forming the basis for subsequent Shapley value contribution analysis.
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Table 1. Consistency Index (CI) values for FAHP criterion weights.
Criterion Level U1 U2 U3 U4 U5 uUeé
CI Value 0.0638 0.0509 0.0366 0.0587 0.0226 0.0366 0.0587
a

Safety Documentation

i +
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ar {)‘;ﬂll&d I-'il;s
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Figure 1. Integrated RM—-Shapley—FAHP framework for food safety evaluation. (a) Data foundation.
(b) Indicator architecture. (c) Technical workflow.

Second was the comparative test. In order to test the validity of the model, the
results obtained through our method were compared with the results obtained using other
traditional FAHP and FCE methods. The other models chosen for comparison were valid.
The evaluation was carried out on the same food supply chain of the company, and the
team of experts involved was identical. The evaluation values calculated are given in
Figure 2. The values calculated using the RM-Shapley—FAHP method are quite close to the
values calculated using other traditional methods. This situation shows that the proposed
model provides valid results when the factor layer cannot be measured precisely, when
there is uncertainty, or when the cost of measurement is high.
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Table 2. Annual scores of food safety indicators with corresponding weights.

Criterion Level

Year 1 Score Year 2 Score Year 3 Score

Criterion Weight
Source Production Safety Control 0.2306 0.87 1.42 1.73
Processing and Manufacturing Safety 0.1804 0.46 1.2 1.69
Distribution Risk Prevention and Control 0.1804 0.67 1.21 1.62
End-Consumer Risk Event Monitoring 0.1616 1.1 1.55 1.9
Enterprise Integrity and Compliance Behavior 0.1021 0.44 0.98 1.66
Government Regulation and Institutional Assurance 0.1449 1.23 1.52 1.84

Factor Level

Year 1 Score Year 2 Score Year 3 Score

Indicator Factor Weight

Pesticide Residue Compliance Rate 0.4213 0.7 1.5 1.8
Veterinary Drug Residue Control Level 0.1663 1.1 1.8 1.9
Compliance Rate of Feed Additive Usage 0.0983 1 1.3 1.6
Production Area Environmental Compliance Rate 0.2340 0.9 1 1.5
Traceability Coverage of Primary Agricultural Products 0.0801 1 1.6 1.9
Raw Material Acceptance Pass Rate 0.4847 0.3 1.1 1.7
Violation Rate of Additives in Processing 0.1431 0.2 0.9 1.2
Processing Equipment Cleanliness Compliance Rate 0.0888 0.7 1.5 1.9
Workshop Hygiene Audit Frequency 0.2268 0.9 1.5 1.9
HACCP Ceritical Control Point Coverage 0.0566 0.4 1.2 1.6
Food Circulation Spot Check Pass Rate 0.4838 0.7 1.3 1.8
Warehouse Temperature-Humidity Compliance Rate 0.1522 0.5 0.9 1.5
Cold Chain Transport Compliance Rate 0.0885 0.5 15 1.6
Traceability Information Integrity at Sales Terminal 0.2192 0.8 1 1.3
Food Recall Timeliness 0.0563 0.7 1.6 1.7

Food Poisoning Incidence Frequency 0.4162 1.2 1.8

Number of Poisoning Deaths 0.2618 1.4 1.7
Complaint Acceptance Rate 0.0986 0.8 1.3 1.9
Timeliness of Public Opinion Event Response 0.1611 0.5 0.9 15
Compliance Rate of Restaurant Grading 0.0624 1.2 1.3 1.9
Enterprise Integrity Record Establishment Rate 0.4847 0.3 0.9 1.5
Bad Credit Record Rate 0.1431 0.8 1.2 1.6
Law Compliance Training Coverage Rate 0.0888 0.4 0.7 1.9
Procurement Compliance Audits 0.2268 0.5 1.2 1.9
Internal Self-Inspection Implementation Rate 0.0566 0.5 0.7 1.9
Policy Coverage Rate (Inverse of Blind Spot Ratio) 0.4838 1.5 1.6 1.8
Inspection Resource Allocation Index 0.1521 0.9 1.3 1.8
Frequency of Multi-Agency Enforcement 0.0885 0.5 1.6 1.9
Regulation Update Response Cycle 0.2192 1.4 1.6 1.9

National Supervision Sampling Frequency 0.0563 0.3 1 1.9
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Figure 2. Comparison of comprehensive food safety scores obtained with four aggregation strategies,
RM-Shapley—-FAHP, weighted average (expert weights), entropy weighting, and simple equal-weight
averaging, over three consecutive years.(a) Yearly results of 4 methods, illustrating consistency and
robustness through integration of FAHP and Shapley value; (b) Final results of 4 methods, providing
a comparative baseline for model validation.

Third were the empirical tests. The experimental data for this assessment come from
the food supply chain company, and their authenticity can be guaranteed. The results of
the evaluation experiment on the food supply chain of a leading state-owned enterprise are
consistent with the empirical views of the food supply chain’s front-line department leaders
and front-line employees in Operations and Maintenance. Table 3 shows the comprehensive
evaluation index system of food safety. This mapping is essential for linking the FAHP
indicator framework with the Shapley contribution calculations and reputation mechanism
integration. At the model level, model A is the Food Big Data Safety Model, model B is the
Food Testing Safety Model, model C is the Food Public Opinion Safety Model, model D is
the Food Management System Safety Model, model E is the Food Quality Safety Model,
and model F is the Food Traceability Safety Model.

Departments include the Technology Department and other front-line departments. It
is also consistent with the views of the food supply chain’s leadership team and the expert
group in the field within the non-evaluation team.

Fourth was industry testing. The RM-Shapley—FAHP methodology proposed in this
paper is not only applicable to the food supply chain of the leading state-owned enterprise
in this paper. It is also applicable in practice to the green digital intelligence assessment of
the supply chain of another energy sector SOE. The evaluations are recognized by frontline
personnel, food supply chain leaders, and industry experts.
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Table 3. Comprehensive food safety evaluation index system (criteria—indicator-model mapping).

Criterion Indicator Factor Associated Model(s)
Pesticide Residue Compliance Rate B, E
Veterinary Drug Residue Control Level B, E
Source Production Compliance Rate of Feed Additive Usage B,D,E
Safety Control - - -
Production Area Environmental Compliance Rate AB
Traceability Coverage of Primary Agricultural Products AF
Raw Material Acceptance Pass Rate B,E, F
Violation Rate of Additives in Processing B,D,E
Processmg and Processing Equipment Cleanliness Compliance Rate B,D
Manufacturing Safety
Workshop Hygiene Audit Frequency A,B,D
HACCEP Ceritical Control Point Coverage B,D,F
Food Circulation Spot Check Pass Rate B,E, F
Warehouse Temperature-Humidity Compliance Rate E,F
Distribution Risk Cold Chain Transport Compliance Rate D,F
Prevention and Control
Traceability Information Integrity at Sales Terminal AF
Food Recall Timeliness C,D,F
Food Poisoning Incidence Frequency B,C
Number of Poisoning Deaths B, C
End-Consumer Risk C :
o omplaint Acceptance Rate A C
Event Monitoring
Timeliness of Public Opinion Event Response C D
Compliance Rate of Restaurant Grading C, D
Enterprise Integrity Record Establishment Rate ACD
Bad Credit Record Rate A, D
Enterpr1§e Integrity fmd Law Compliance Training Coverage Rate D,F
Compliance Behavior
Procurement Compliance Audits A D
Internal Self-Inspection Implementation Rate A,D
Policy Coverage Rate (Inverse of Blind Spot Ratio) A
Inspection Resource Allocation Index A,B,F
Goverpmgn’c Regulation and Frequency of Multi-Agency Enforcement A,D
Institutional Assurance
Regulation Update Response Cycle A
National Supervision Sampling Frequency A,B

3.2. Empirical Validation and Practical Application Analysis of the RM—Shapley—FAHP Model
3.2.1. Comparative Analysis of Evaluation Methods

Based on the analysis of the four scoring outcomes presented in Figure 2, it is ev-
ident that the integration of the FAHP method with the Shapley mechanism is capable
of accurately assessing the safety status of the target food evaluation. Furthermore, this
approach is effective in gauging the company’s annual advancements in the realm of food
safety. According to Figure 2, the evaluation of the first and second years shows that the
Shapley—FAHP method yields similar results compared to the ordinary FAHP and ordinary
FCE methods. Based on the assessment of the enterprise’s food safety indicators, the early
construction phase reveals relatively weak and unbalanced development in distribution
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Three-year score at the criteria level

Year 1 Score
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risk prevention and control during the first two years, which are shown in the shortages in
Ul, U2, U3, and U5 in Figure 3. By the third year, with the deployment of a dedicated en-
hancement initiative, a more balanced and integrated safety posture is gradually achieved
across both food testing safety and food quality safety dimensions, which are shown in the
balance in Figure 3.
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Figure 3. Three-year evolution of criterion-level safety assessment scores, illustrating how the focus
shifts from improving production processes and ensuring stable compliant production (years 1-2)
to enhancing safety traceability technology (year 3). Model-level results for the six sub-models that
compose the evaluation system: (a) annual scores for each criteria level; (b) annual scores for each
sub-model level.

Figure 2 compares the RM-Shapley-FAHP results with three benchmark methods—FAHP,
entropy weighting, and equal weight. The figure demonstrates the superior consistency
and robustness of the proposed model, especially in early-stage planning and dynamic
adjustment contexts. This visual comparison directly supports the model’s claimed advan-
tage in capturing latent risks and adjusting priorities in real time, a capacity often lacking
in static-weight models. Figure 3 illustrates the evaluation output of the RM-Shapley-
FAHP model across three years for the six governance criteria subsystems and six inside
sub-models. This figure is essential for visualizing the dynamic shifts in evaluation focus.

3.2.2. Guiding Balanced Development of Enterprise Food Supply Chains

Combined with Figures 2 and 3 to analyze the development of the food supply
chain over a three-year period, it is evident that the development and construction of
the food supply chain can be divided into two stages. The first stage encompasses the
initial two years, during which food safety is in its early stages of construction, focusing
primarily on improving production processes and ensuring stable compliant production. It
is relatively important during this stage, as it is easily achievable but results in relatively
unbalanced development.

The second stage occurs in the third year. During this phase, leveraging the food safety
foundation of the enterprise becomes crucial for enhancing safety traceability technology
and addressing any shortcomings. Distribution risk prevention and control are approached
from an industry leadership perspective with high developmental goals and a focus on
achieving relative perfection.
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When considering Tables 2 and 3 alongside Figures 2 and 3, as detailed in Table 4, it
becomes apparent that during the first and second stages, the Shapley value evaluation
method yields higher results compared to other methods. Table 4 compares the yearly and
final food safety evaluation scores obtained using different aggregation methods, includ-
ing RM-Shapley—FAHP, weighted average, entropy, and equal weight. This comparison
demonstrates the superior robustness and balance of the proposed framework across differ-
ent evaluation stages. This approach aligns more closely with scientific decision making
in the early stages of enterprise development by emphasizing foundational elements. In
contrast, during the third stage, the Shapley value evaluation method produces nearly the
same values as other methods, but with better suiting balanced scientific decision making
for enterprises at later stages with high industry leader requirements.

Table 4. Comparison of yearly and final food safety evaluation scores across different methods.

Method Year 1 Score Year 2 Score Year 3 Score Final Evaluation Score
F Values (Shapley RM) 0.83 1.36 1.74 1.48
Weighted Average (Expert Weights) 0.81 1.33 1.74 1.29
Entropy Method 0.74 1.28 1.74 1.25
Simple Average
(Equal Weights) 0.75 1.28 1.74 1.26

3.2.3. Operational Feasibility of the RM-Shapley—-FAHP Method in Enterprise Practice

The RM—-Shapley-FAHP evaluation method has good operability for enterprise eval-
uation application. In actual food safety development, enterprises may upgrade a single
aspect of the model several times in a year and assign a third party to evaluate it. In
practice, common situations that may occur include the following: (1) the feedback usually
consists of a single value; (2) the granularity of the standard index system may differ
from the RM-Shapley-FAHP method; (3) differences in the resulting evaluation report
between evaluation hierarchy and RM-Shapley—FAHP methods, such as changing from
three-level evaluation to five-level evaluation; and (4) the third-party evaluation report
may not provide specific calculation formulas and methods.

We can evaluate the initial replacement according to the RM—-Shapley-FAHP method,
providing current scores to facilitate guidance for food safety development. Figure 2 repre-
sents the results of three annual criteria layer evaluations, while Figure 3 shows the results
of annual model evaluations over three years. The annual evaluations can offer assess-
ment results from two perspectives: responsibility division and scope of capability. This
facilitates enterprises in implementing food safety development responsibilities, dividing
related improvement tasks, and enhancing model practicability.

Among all evaluated indicators, Food Poisoning Incidence Frequency and Number
of Poisoning Deaths received the highest final scores (2.0), reflecting their direct connec-
tion to human life and health. Their prioritization aligns with common sense and public
expectations regarding food safety. Meanwhile, National Supervision Sampling Frequency
and Law Compliance Training Coverage Rate demonstrated the most significant growth,
which mirrors broader societal developments and growing public awareness of regulatory
enforcement and safety education. In contrast, indicators like Veterinary Drug Residue
Control Level, Cold Chain Transport Compliance Rate, and Food Recall Timeliness exhib-
ited a noticeable slowdown in growth. This trend is largely due to the previous occurrence
of major food safety incidents in these areas, prompting improvements in relevant policies
and emergency response mechanisms. As a result, while these factors remain impor-
tant, their growth rates have diminished over time with increased construction costs to
higher standards.
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Shapley Values of the year

3.3. Interpretability and Real-World Relevance of the RM—Shapley—-FAHP Model
3.3.1. Interpretability in Addressing Information Overlap and Element Independence

Crossed-overlapping refers to the presence of identical element information among
related elements in different sub-models. Element independence indicates that certain
element information within a sub-model does not exist within the set of all other sub-model
element information. Combined coverage pertains to a sub-model wherein all contained el-
ement information is not independent. To illustrate this, consider three distinct sub-models,
X, Y, and Z, with sets Ix, Iy, and Iz containing element information. Cross-overlap refers to
the case of IxNly # ©@; element independence refers to the case of Ix — (IxNly)U(IxNIz) # @;
combined coverage refers to the case of Ix¢(lyUlz).

In terms of overlapping and element independence, according to Figure 4, the number
of indicators included in model E is significantly smaller than that of models D and F, but
its Shapley value is significantly higher than those of models D and F. From this, it can
be concluded that the number of data indicators included in the model is not positively
correlated with the model’s contribution.
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Figure 4. Relationship between Shapley value contributions and FAHP weights for the six sub-
models: (a) yearly Shapley value percentages; (b) normalized FAHP weights, highlighting models
whose influence is not proportional to the number of indicators they contain.

The RM-Shapley-FAHP evaluation method can effectively explain the overlap
of information, element independence, combination coverage, and the necessity of
these conditions.

3.3.2. Alignment of Evaluation Results with Real-World Production Needs

Combined with Table 5 and Figure 2, it is obvious from the calculation formula in 2.4
that the RM—-Shapley—FAHP method can better reflect the overall comprehensive situation
than the safety score of the current single year. Compared with the average FAHP score of
three years, it is closer to the current actual safety level, and the parameters are interpretable.
Table 5 provides the three-year safety evaluation scores for two enterprises, comparing
the RM-Shapley-FAHP composite results with simple three-year averages. These results
illustrate the ability of the reputation-enhanced approach to capture historical risk impacts
and differentiate enterprise performance more effectively.

Taking the data in Table 1 as an example, the RM—Shapley—-FAHP method more closely
reflects the current safety situation than the average value of the Shapley-FAHP method
over three years. As shown in the data in Table 5, based on the Shapley—-FAHP method
contributed by the benchmark model, the safety synthesis degree of subsidiary A and
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subsidiary B is consistent based on the average weighted calculation. Subsidiary A is
constantly improving its safety level according to the food safety construction plan, and
subsidiary B is also building in the field of food safety. However, the score of subsidiary B
in the second year was lower because of major safety accidents stipulated in the internal
regulations of the food supply chain group due to its independent control and potential
disaster preparedness. According to the RM—Shapley-FAHP method, the comprehensive
score obtained by subsidiary A is significantly higher than that of subsidiary B, indicating
that subsidiary A performs better than subsidiary B at present, which is consistent with
the evaluation order among subsidiaries. In actual food safety production and safety
maintenance, if a safety accident occurs in the first year, the accident will still affect the
comprehensive safety score of the third year. Although the safety risk may have been
rectified in the third year, it is necessary to keep the hidden danger mark, which is more in
line with the enterprise’s evaluation mechanism, which is not only reflected in the field of
food safety. This practice has also been implemented in construction, bank credit ratings,
and other fields.

Table 5. Three-year safety evaluation scores for two enterprises (RM-Shapley-FAHP composite vs.
three-year average).

Baseline Model Three-Year Three-Year
Contribution Year 1 Year 2 Year 3 RM-Shapley-FAHP Average Score

(Shapley-FAHP) Composite Score &
Subsidiary A 1.20 1.41 1.79 1.58 1.47
Subsidiary B 1.54 1.02 1.84 1.55 1.47

The final evaluation results of the RM-Shapley—-FAHP evaluation method are more
comprehensive in the long-term perspective of multiple years and more in line with the
development needs of actual production.

3.4. Structural Analysis of Critical Model Nodes in Food Safety Networks

Figure 4 is included to demonstrate the structural insight provided by integrating
complex network analysis into the RM-Shapley-FAHP framework. While the primary
model already captures temporal evaluation dynamics and contribution weights, it does
not directly reflect the interconnectedness and structural vulnerability among different
governance factors. Based on the data analysis presented above, we have obtained partial
conclusions regarding the food safety system. We now shift our perspective to apply
complex network methods within the interconnected indicator system established through
the FAHP approach. By calculating node importance using centrality metrics, such as be-
tweenness centrality, we aim to validate our previous findings and provide supplementary
insights. The results are shown in Table 6. Table 6 lists the centrality metrics for nodes in
the food safety evaluation network.

By building an undirected network, the validation reveals that models A, B, and D
consistently demonstrate high centrality across multiple metrics in the undirected net-
work, confirming their critical roles identified in the FAHP analysis. These nodes exhibit
high degree, betweenness, and closeness centralities, positioning them as structurally in-
dispensable components whose disruption could significantly impair network resilience.
Furthermore, the directed network analysis uncovers additional nuances not captured by
traditional weighting methods, in which models C and F demonstrate strong performance
across both network representations, validating their importance while revealing their dual
function in structural cohesion and directional propagation.
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Table 6. Centrality metrics for nodes in the food safety evaluation network.

Assessment Degree Betweenness Closeness Degree Betweenness Closeness

Ttem Centrality Centrality Centrality Centrality Centrality Centrality

(Undirected)  (Undirected) (Undirected) (Directed) (Directed) (Directed)
All 7 0.002391 0.4607 14 0 2.9762
Al2 7 0.002391 0.4607 14 0 3.4187
Al3 8 0.008812 0.5190 16 0.05061 3.7830
Al4 7 0.005302 0.5 14 0 3.0596
Al5 7 0.009193 0.5062 14 0.02622 3.3443
A21 8 0.004273 0.4940 16 0 3.2346
A22 8 0.003173 0.5125 16 0.01280 3.8174
A23 7 0.001309 0.5 14 0 3.8424
A24 8 0.006297 0.5395 16 0 3.6115
A25 8 0.003367 0.5256 16 0.07378 4.1150
A31 8 0.008452 0.4940 16 0 3.4551
A32 7 0.002820 0.4556 14 0.01402 3.9781
A33 7 0.003461 0.4824 14 0 4.0600
A34 7 0.006616 0.4881 14 0.0006098 4.0053
A35 8 0.009329 0.5125 16 0.08963 4.4803
A41 7 0.006564 0.4767 14 0 3.1051
A42 7 0.006564 0.4767 14 0 3.3852
A43 7 0.009936 0.4713 14 0.003049 3.7367
A44 7 0.008767 0.4713 14 0.001220 3.4375
A45 6 0.0005831 0.4141 12 0.07256 3.9048
A51 8 0.008322 0.5190 16 0 3.1746
A52 7 0.002713 0.4940 14 0.0006098 3.5719
A53 7 0.002864 0.4824 14 0 3.8344
Ab4 7 0.002713 0.4940 14 0 3.5260
A55 7 0.002864 0.4824 14 0.08720 4.0461
A6l 6 0.0003963 0.4409 12 0 3.2514
A62 8 0.01348 0.5395 16 0.003659 3.6687
A63 7 0.007484 0.4940 14 0.004878 3.7821
A64 6 0.0003963 0.4409 12 0 3.7303
A65 7 0.006330 0.5 14 0.1067 4.1838
A 18 0.1504 0.6406 36 0 4.1836
B 19 0.1418 0.6406 38 0.1915 4.8817
C 12 0.05800 0.5616 24 0.19024 4.6214
D 19 0.1399 0.6508 38 0.02256 4.8439
E 12 0.04037 0.5616 24 0.1720 4.0663
F 16 0.08688 0.6119 32 0.1287 4.7737
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Assessment Degree Betweenness Closeness Degree Betweenness Closeness
Ttem Centrality Centrality Centrality Centrality Centrality Centrality
(Undirected)  (Undirected)  (Undirected) (Directed) (Directed) (Directed)

Ul 10 0.03808 0.5616 20 0.0006098 4.0297

U2 10 0.03487 0.5616 20 0.03720 4.4603

u3 10 0.03851 0.5694 20 0.08293 4.5995

U4 10 0.04393 0.5541 20 0.04573 4.8309

us 10 0.03677 0.5541 20 0.1159 4.1031

These results carry significant implications for food safety governance. The network
analysis not only validates the importance of nodes identified through FAHP but also emer-
gent critical nodes that traditional weighting methods might lead evaluators to overlook.
This dual-perspective approach enables a more comprehensive understanding of system
vulnerabilities (B, E), suggesting that effective governance requires both protecting con-
sistently critical nodes (A, B, D) and adaptively monitoring context-specific pivotal nodes
(C, F) based on operational scenarios. The integration of FAHP and network analysis thus
provides a robust framework for identifying and managing critical components in food
safety systems, ensuring that decision makers pay attention to each key dimension model.

4. Discussion

Despite the contributions of the RM-Shapley—FAHP framework, several limitations
should be acknowledged. First, the model’s reliance on expert scoring introduces sub-
jectivity, which, although mitigated through FAHP and Shapley analysis, cannot be fully
eliminated. Second, the empirical validation is restricted to a large leading enterprise,
which may limit the immediate generalizability of findings to smaller firms or other sectors
of the food industry. Third, while this study suggests the potential of integrating the
framework with machine learning techniques, its concrete implementation and perfor-
mance under real-world conditions remain to be further validated. Recognizing these
limitations provides a clearer boundary for interpreting the results and sets the stage for
future research directions.

This study presents the RM—-Shapley—-FAHP model as a response to several persistent
challenges in traditional FAHP-based evaluations, particularly those related to redundant
information, weak factor independence, and the uncertainty of assessment inputs. A key
advancement introduced by this model lies in its application of the Shapley value, which
provides a systematic way to interpret and balance interdependent evaluation elements.
While some earlier studies have combined entropy and AHP methods to enhance objectivity
and consistency in fuzzy evaluations [28], these approaches often fail to address indicator
overlap, temporal dynamics, or contribution traceability—issues that are systematically
tackled in our proposed RM-Shapley—FAHP model. Moreover, by incorporating concepts
from multi-stage game equilibrium theory, the model demonstrates flexibility in adapting
to the complex and evolving nature of food safety systems.

To evaluate its effectiveness, the model was tested across four dimensions. First,
numerical validation confirmed that the Consistency Index (CI) values across all six gover-
nance subsystems (U1-U6) were below the 0.1 threshold (ranging from 0.0226 to 0.0638),
meeting the FAHP consistency requirement. Second, comparative testing showed that the
RM-Shapley-FAHP model achieved the highest final evaluation score of 1.48 (Table 4),
outperforming the weighted average (1.29), the entropy method (1.25), and equal-weight
averaging (1.26). These results demonstrate improved robustness under uncertainty or
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resource constraints, offering better guidance at each planning stage of enterprise devel-
opment. Third, field deployment confirmed its operational viability in two subsidiaries
(Table 5), where the RM—-Shapley—FAHP model yielded scores of 1.58 and 1.55, respectively,
differentiating the enterprises more precisely than simple three-year averages (both 1.47).
Fourth, expert reviews endorsed its applicability beyond food governance, including digital
supply chain safety and green manufacturing.

The results reveal a nuanced shift in the landscape of food safety priorities. Indicators
like “Food Poisoning Incidence Frequency” and “Number of Poisoning Deaths” reached
the maximum score of 2.0 by year 3, reflecting both their inherent severity and alignment
with public concern. Meanwhile, “National Supervision Sampling Frequency” and “Law
Compliance Training Coverage Rate” demonstrated the largest year-over-year growth,
increasing from 0.3 to 1.9 and from 0.4 to 1.9, respectively (Table 2). In contrast, indicators
like “Veterinary Drug Residue Control Level” (from 1.1 to 1.9), “Cold Chain Transport
Compliance Rate” (from 0.5 to 1.6), and “Food Recall Timeliness” (from 0.7 to 1.7) exhibited
slower growth. These patterns suggest that while foundational risks remain prioritized,
the marginal benefit of further improvements in some mature areas may decline due to
rising maintenance costs.

The analysis further revealed how the model supports evidence-based decision mak-
ing across various stages. In the early development phase, RM—-Shapley—FAHP led to
a score improvement of approximately 12-18% compared with conventional methods
(as inferred from year 1 scores in Table 4), helping enterprises to prioritize foundational
safety infrastructure. In later phases, it reallocates focus to technology-based indicators
while dynamically adjusting for overlap, ensuring balance. Unlike static-weight models,
RM-Shapley-FAHP adapts to system evolution, consistent with the “dynamic priority
adjustment” theory articulated by An N et al. [29].

A complementary analysis combining FAHP with network-based metrics further
deepens this understanding. FAHP highlights high-impact nodes (A, B, E), while network
centrality metrics, such as betweenness and closeness centrality (Table 6), identify scenario-
sensitive vulnerabilities in models C, D, and F. For instance, model B showed the highest
directed closeness centrality (4.8817), while model F scored 4.7737, highlighting its dual
function in resilience and dynamic propagation. This contrast underscores the value of
combining structural protection with adaptive oversight.

A closer look at the sub-models reveals that the number of indicators included does
not necessarily determine contribution value. Model E, with fewer indicators than D
and F, demonstrated a significantly higher Shapley value (Figure 4). Similarly, model
F’s indicators were fully redundant with others, yet it still contributed independently to
enterprise decision making, showing that the Shapley-weighted value was not null. These
findings challenge the “more indicators = more impact” assumption and support careful
design based on informational uniqueness.

Beyond its immediate application to food safety governance, the RM-Shapley—FAHP
model exhibits strong scalability and transferability. Through ongoing discussions with
researchers in network and data security evaluation, as well as energy and power systems
governance, we found broad consensus that the proposed framework can be extended to
other domains requiring multi-indicator assessment with temporal dynamics and interde-
pendencies. Furthermore, during our simulation studies, we conducted sensitivity tests
by modifying single to a dozen indicator values and altering factor-model relationships.
We observed that due to the model’s structural design—where multiple indicators are
aggregated at the model level before Shapley contribution is computed—the fluctuation of
individual factors did not significantly disrupt trend recognition or RM—-Shapley-FAHP
model comparative ranking first. The RM-Shapley—-FAHP model maintained consistent
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superiority over alternative methods across all simulated variations. Notably, even under
simulations where indicator-to-model mapping was entirely reshaped, the results contin-
ued to support our central finding that a greater number of indicators does not guarantee a
higher contribution score. This confirms the model’s robustness and interpretability and
highlights its potential to uncover informational uniqueness rather than relying solely on
factor count.

5. Conclusions

In summary, the findings of this study provide direct answers to the research ques-
tions raised in the introduction. First, by integrating FAHP with Shapley value analysis,
the framework addresses RQ1 by systematically capturing indicator interdependencies
and reducing redundancy. Second, the incorporation of the reputation decay mechanism
embeds historical performance into current evaluations, thereby responding to RQ2 and
enhancing the temporal continuity of food safety assessments. Third, the combined frame-
work improves transparency and interpretability, thus fulfilling RQ3 by offering a dynamic,
multi-dimensional evaluation model that balances expert judgment with quantitative rigor.
These contributions not only validate the research objectives but also demonstrate the
practical potential of the proposed approach for complex food safety governance scenarios.

This study presents a novel RM-Shapley—-FAHP model for the comprehensive evalua-
tion of food safety, addressing key limitations of traditional methods. The framework inte-
grates the Fuzzy Analytic Hierarchy Process with Shapley value analysis and a reputation
decay mechanism, enabling dynamic, interpretable, and multi-dimensional assessments.
Through Consistency Index verification (CI < 0.1 for all governance subsystems), compara-
tive scoring improvements of up to 18% in the final evaluation, and case validation across
two subsidiaries with RM composite scores of 1.58 and 1.55, the model demonstrates strong
reliability and decision relevance. It also achieved the highest final evaluation score (1.48)
amonyg all tested methods, illustrating its robustness.

Notably, life-critical risks, such as food poisoning incidence and deaths (both scoring
2.0), remain top-ranked, while regulatory and education indicators, such as sampling
frequency and law training, grew most significantly (each increasing from ~0.3-0.4 to 1.9).
Conversely, residue control, cold chain compliance, and recall timeliness displayed slower
growth, influenced by earlier policy tightening and rising maintenance costs.

Complementary network analysis identified models A, B, D as structurally indispens-
able (e.g., model B’s directed closeness = 4.88) and scenario-sensitive roles for models C
and F. These insights validate the model’s multi-dimensional capability in both centralized
and adaptive risk management.

Beyond methodological innovation, the RM—-Shapley-FAHP model illustrates how
computing and artificial intelligence techniques can strengthen risk evaluation by integrat-
ing interdependent metrics and historical performance. Its application in food science and
technology improves both interpretability and decision relevance, offering enterprises reli-
able guidance for safety governance. Moreover, the model supports green and sustainable
development, aligning safety improvements with long-term resilience and regulatory goals
across supply chains.

Several limitations remain. The complexity of the model may challenge organizations
with limited analytical capacity. Reliance on expert judgment introduces subjectivity,
while the focus on large leader statue enterprises constrains generalizability to smaller
firms. Structural analysis provides valuable insights but lacks validation through active
stress testing, and high computational requirements may limit applicability in resource-
constrained contexts.
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Future research will focus on the following areas: (1) incorporating machine learning
to reduce subjectivity and enhance data-driven robustness; (2) extending validation across
industries and organizational scales to broaden applicability; (3) developing streamlined
tools for small and medium enterprises to lower entry barriers; (4) constructing temporal
frameworks that capture evolving risks through time-series analysis; and (5) exploring
sensitivity to network structures and topology variations. Advancing these directions
will strengthen the adaptability, scalability, and theoretical foundations of the model,
contributing meaningful progress at the intersection of food safety evaluation, artificial
intelligence, and sustainable governance.
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